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Abstract. Password guessing attacks and users’ vulnerable password 
behaviors pose severe threats to password security, and accurate pass-
word strength meters (PSMs) can mitigate these threats by nudging users 
to choose secure passwords. In this light, PSMs have been deployed by 
nearly every respectable web service and application during registration 
or password reset. However, most PSMs in both academia and industry 
only focus on the structural and semantic features of the password itself, 
and failed to capture users’ vulnerable password reuse behaviors. 

To fill this gap, we propose a new PSM, namely EditPSM, that takes 
users’ password reuse behaviors into consideration. EditPSM is based on 
a targeted password guessing framework via deep learning, and does not 
require users’ existing passwords to protect users’ privacy. It utilizes pop-
ular passwords identified in the training set and learns how users modify 
them. This leads to credential tweaking models, a type of targeted pass-
word guessing model, to effectively evaluate password strength without 
needing access to users’ existing passwords. Through extensive evalua-
tions involving 10 large-scale datasets and 8 mainstream PSMs in the 
real world, EditPSM demonstrates its superior performance over prior 
art. We believe this work makes a substantial step towards introducing 
targeted password models into password strength evaluation. 

Keywords: Password strength evaluation · Password security · Users’ 
behavior · Deep learning 

1 Introduction 

Serving as a line of defense for users’ cyber security and privacy, textual password 
firmly remains one of the most dominant methods in authentication due to their 
simplicity to use and low cost to deploy [ 8]. While passwords are widely used for 
authentication, effective password guessing models and users’ vulnerable behav-
iors upon password selection pose significant threats to password security [ 7, 22]. 
In order to protect users from potential harm, it is vital for service providers to 
guide users to choosing more secure passwords. 

Accurate password strength meters (PSMs) can provide timely feedback to 
users, hence assist users in creating stronger passwords [ 20, 24]. As a result, 
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nearly every respectable service now employs a PSM upon user registration or 
password reset, as an effort to encourage stronger passwords that can better 
resist password guessing [ 24]. For example, both 12306 [ 3] (A Chinese train 
ticket booking website) and Microsoft Edge browser [ 4] have employed PSMs  
that can show users the strength of their passwords in a binned form. 

However, research has found that only PSMs providing accurate feedback can 
help users choose stronger passwords, those that are inaccurate would even do 
more harm than good [ 13, 24]. To address this issue, both academia and indus-
try have made efforts to design accurate and robust PSMs in the past years. 
Pattern- and rule- based PSMs, such as zxcvbn [ 29], evaluate passwords based 
on character types (lowercase and uppercase letters, digits and symbols, etc.) 
or patterns observed in the password, and are widely used by service providers. 
Probabilistic-based PSMs, such as PCFG-PSM [ 15] and fuzzyPSM [ 23], are pre-
ferred by the academia. Mostly derived from trawling password guessing models 
[ 28], these PSMs assign probabilities to passwords. The lower the probability, the 
more secure the password is. Deep learning approaches to evaluating passwords 
have also been proposed, but prior work (see [ 13, 24]) deems that they fail to 
outperform their foremost counterparts of other technical routes. 

Although numerous PSMs have been proposed over the years, most of them 
merely focus on the structural and semantic features of passwords. Their eval-
uation of password strength is largely based on password composition or distri-
bution, overlooking users’ vulnerable reuse behaviors. To the best of our knowl-
edge, among mainstream PSMs, only fuzzyPSM [ 23] and  vec-PPSM [  18] take 
users’ password reuse behaviors into consideration. Based on statistical meth-
ods, fuzzyPSM does not learn how passwords are reused individually, instead 
it treats all passwords in a dataset as a whole, and learns how passwords in 
one dataset are constructed by reusing segments or editing whole passwords 
from another dataset. However, the statistical method employed by fuzzyPSM 
[ 23] limits its ability to capture more complex reuse behaviors. Vec-ppsm, on 
the other hand [ 18], requires sister passwords (i.e., a password of the same user 
leaked by other services), raising privacy concerns for its real-world deployments. 

Additionally, academia-designed PSMs are mostly based on password guess-
ing models. The intuition is that as they can crack passwords, they can also 
estimate password strength from attackers’ perspectives [ 15, 17]. As the best-
performing type of password guessing frameworks, credential tweaking (i.e., 
reuse) models modify users’ sister passwords to generate new guesses, achieving 
staggering success rates of nearly 70% [ 26, 30]. However, designing PSMs based 
on password reuse behaviors without users’ sister passwords remains a challenge. 

1.1 Motivations 

Recent research has found that users’ insecure password behavior could greatly 
endanger the security of passwords [ 11, 25]. According to a recent survey con-
ducted by the LastPass security enterprise [ 2], over 65% of users tend to directly 
reuse or slightly modify a sister password to create passwords for a new service. 
Most PSMs in both academia and industry, however, fail to capture such user
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behaviors, focusing only on password composition and distribution. In contrast, 
in the design of password guessing models, the academia is well aware of users’ 
reuse behaviors, and has made efforts to design various credential tweaking mod-
els exploiting users’ sister passwords. The situations stated above give rise to the 
following two key research questions (RQs) :  

RQ1: How to design a PSM based on credential tweaking model that can cap-
ture users’ password reuse behaviors without knowing user’s sister password? 

RQ2: If a PSM derived from a credential tweaking model can be constructed, 
how can it ensure the performance over existing PSMs in prior art? 

To answer the research questions above, we design and implement a PSM 
aiming to capture users’ password reuse behavior, namely EditPSM, without 
requiring access to the users’ sister passwords (leaked passwords), based on the 
mainstream credential tweaking model Pass2Edit [ 26]. Furthermore, we evaluate 
and show the performance of our EditPSM. 

1.2 Contributions 

We summarize our contributions in this work as follows: 

A New Technical Route. To use credential tweaking models in password 
strength evaluation when users’ sister passwords are unavailable, we present a 
brand-new and generic technical route that draws top passwords in an untar-
geted, fairly ordinary password dictionary, and further derives an intermediate 
training set. Such an intermediate training set can be utilized by any credential 
tweaking model, enabling these models to learn users’ password reuse behavior. 

A New Password Strength Meter. We, for the first time, introduce creden-
tial tweaking models to practical password strength evaluation. Our proposed 
EditPSM employs a deep learning framework, and can capture users’ reuse 
behaviors. By generating an intermediate training set from a single password 
dictionary, EditPSM does not require sister passwords of any specific user to 
learn users’ password reuse behavior, as they are unavailable in practical cases. 
While fuzzyPSM captures users’ reuse behavior at dataset level and requires 
two distinct password datasets [ 23], our EditPSM captures users’ reuse behav-
iors password by password, with only one password dataset as the minimum 
requirement. 

Extensive Evaluation. We conduct a series of experiments involving 10 large 
real-world datasets and 9 password strength meters, including 8 mainstream 
PSMs and our proposed EditPSM, and measured their accuracy. The results 
demonstrate the effectiveness of our EditPSM, and validate our claim that cre-
dential tweaking models can also be applied to practical password strength eval-
uation scenarios, while outperforming other PSMs.
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Some Insights. Previous work put emphasis on reusing sister passwords, pre-
suming that users’ password reuse behaviors is limited only to modifying their 
own passwords [ 11]. In contrast, we observe that a large proportion of passwords 
are similar with popular passwords, indicating users also modify popular pass-
words or use segments of popular passwords to create new ones. Furthermore, 
we find that this behavior differs for users of different languages, Chinese and 
English users to be specific. These observations provide a new perspective for 
understanding password reuse. 

2 Preliminaries and Related Work 

In this section, we elaborate on the preliminaries of a PSM based on targeted 
password guessing frameworks, and briefly review related work. 

2.1 Evaluating Password Strength Using PSMs 

Real-World Password Strength Evaluation Scenarios. Password strength 
should be evaluated under both online and offline guessing scenarios. In the 
online guessing scenario, PSMs are designed to defend against both trawling 
and targeted guessing attacks. However, existing PSMs fall short of evaluating 
password strength in response to this threat, as they unrealistically require users’ 
sister passwords, causing privacy concerns. In offline guessing scenarios, PSMs 
focus on evaluating the time required to crack a hashed password leaked from a 
service provider. In this work, we mainly focus on the more threatening online 
guessing scenario, and leave offline guessing scenarios as future work. 

Password Strength Meters. The most common and practical way to evaluate 
password strength is to use password strength meters (PSMs) [ 21]. For password 
strength evaluation in online guessing scenarios, an ideal meter [ 23] should pre-
cisely reproduce the probability distribution χ of passwords in a target dataset. 
Such an ideal meter can be described as: 

M(pw) =  ppw, ∀pw ∈ Γ, (1) 

where ppw is the true (but not known) probability of password pw drawn from χ. 
This meter is ideal because when an attacker attempts to guess user passwords 
online without prior knowledge of a specific user, his best strategy would be 
guessing in descending order of password probability against the targeted ser-
vice [ 7]. Hence, this meter could ideally prevent users from selecting passwords 
vulnerable to such guessing schemes. In this light, any real-world PSM can be 
seen as an approximation of this ideal meter, and we could evaluate the accuracy 
of a PSM by comparing the outputs of such PSM with that of the ideal meter. 
We will describe this evaluation procedure in detail in Sect. 4.4.
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2.2 Previous PSMs 

Both academia and industry have proposed various PSMs. We choose eight rep-
resentative PSMs to be compared with our proposed EditPSM. As those PSMs 
are in different technical routes, we now look into their characteristics. 

Industry-Designed PSMs. We select the representative 12306 PSM [ 3], 
Microsoft PSM (as described in [ 1, 24]) and zxcvbn PSM [ 29] from the industry 
to be compared with EditPSM. 12306 PSM is implemented by 12306, a website 
for train ticket booking for millions of travelers in China, and Microsoft PSM 
was once adopted by services such as Outlook and Skype. They are real-world 
PSMs that serve billions of users, hence we believe the performances of these 
PSMs reflect the general standards prevalent in industry-designed PSMs. Fol-
lowing the recommendations of Melicher et al.’s [ 17], we use zxcvbn to represent 
best-performing PSMs in the industry. All Industry-designed PSMs above do 
not require training sets. 

Statistics-Based and Similarity-Based PSMs. PCFG-PSM [ 15] is based  
on one classic guessing framework, probabilistic context-free grammar password 
guessing model. As Wang et al. [ 23] have found that PCFG-PSM performs better 
than Markov-PSM [ 9], we use PCFG-PSM in this work for comparison. For 
similarity-based PSMs, we use LPSE proposed in [ 14], which evaluates passwords 
by using the similarity between the user’s password and the standard strong 
password, without using any training dataset. 

Deep-Learning-Based PSMs. At USENIX Sec’17, Melicher et al. [ 17] pro-
posed a password guessing model based on Recurrent Neural Networks, and 
designed RNN-PSM based on the model’s output probability. The framework 
they designed could be compressed to as little as a few hundred kilobytes and 
could be deployed client-side. Another example of deep-learning-based PSMs is 
the CNN-PSM proposed in [  19] that utilizes Convolutional Neural Networks. The 
PSM they designed is highly interpretable and provides character-level strength 
feedback. We use the source code generously open-sourced by the authors of 
these PSMs, as to avoid incorrect implementations leading to biased results. 

Reuse-Based PSMs. Currently, two PSMs stand out for their efforts in 
capturing password reuse behavior: fuzzyPSM [ 23] and  vec-PPSM [  18]. Essen-
tially, fuzzyPSM is an improvement of PCFG-PSM, employing the same statis-
tical methods to capture user’s password reuse behavior at the dataset level. 
FuzzyPSM assumes that all passwords in one dataset are constructed by reusing 
segments or passwords from another dataset, and is trained on two differ-
ent training sets to learn such reuse behavior. According to a recent study 
[ 24], fuzzyPSM is currently the best performing PSM when considering online 
scenarios. However, as fuzzyPSM requires two distinct password datasets, its
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application to real-world situations is limited. Furthermore, statistical method 
that fuzzyPSM employed suffers from overfitting and sparsity issues [ 16], lack-
ing generalization ability. Vec-PPSM, though based on a credential-tweaking 
model, requires sister passwords of users, which are considered as sensitive data. 
Since the use of such data is impractical, we only evaluate the performance of 
fuzzyPSM for comparison. 

2.3 Password Reuse Behaviors and Targeted Password Guessing 

Users’ Password Reuse Behaviors. According to surveys conducted by pre-
vious works [ 2, 11, 23], over 65% of users tend to directly reuse or slightly modify 
existing passwords for new services. These behaviors expose users to credential 
tweaking attacks, a form of targeted password guessing attacks where attackers 
exploit leaked passwords (sister passwords) of a specific user. Worse still, increas-
ingly common password file leaks [ 5, 31] over the years have provided attackers 
with sufficient sister passwords for such attacks. While attackers can have access 
to users’ sister passwords, they aren’t available in most cases for service providers 
as they are sensitive data. This makes it difficult for PSMs deployed in online 
services to model users’ password reuse behavior. 

Targeted Password Guessing Frameworks. There are  two main types  of  
targeted guessing frameworks, one focuses on exploiting users’ personal infor-
mation, and the other utilizes users’ sister passwords (i.e., credential tweaking 
attacks) [ 18, 25, 26]. In this work, we mainly consider those that are based on 
password reuse, also known as credential tweaking models. 

Credential tweaking models learn how users modify existing passwords and 
apply them to guess other passwords of the same user. Statistical methods are 
first employed to learn users’ reuse behaviors. For instance, Targuess-II [ 25] uti-
lizes a probabilistic context-free grammar, achieving the success rate of a stag-
gering 70% within 1,000 guesses when only one leaked password is provided. 
Deep learning-based models [ 18, 26] were later demonstrated to be even more 
effective. For example, Pass2Path uses a neural network to learn users’ password 
modifications on the character level, and predicts a sequence of edit operations 
for a given sister password [ 18]. These models were mostly made in academia to 
simulate attackers’ targeted guessing attacks. However, few works have success-
fully found effective defense mechanisms by utilizing credential tweaking models, 
as sister passwords are unavailable in most cases for service providers. 

3 EditPSM: A New Password Strength Evaluation Model 
Based on Password Reuse via Deep Learning 

We now elaborate on EditPSM, a new PSM based on a credential tweaking 
model. First, we explicate how applications of these models are made possible 
using our brand-new technical route.
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3.1 Extract Reuse Behaviors Using Credential Tweaking Models 

Applying credential tweaking models to password strength evaluation is not 
a straightforward task: sister passwords of users are unavailable to service 
providers in most cases. To address this problem, we analyze reuse behavior 
from a different perspective. When users reuse passwords by modifying exist-
ing passwords, three main reuse behaviors exist. First, users can modify sister 
passwords they used for a different service [ 11]. This type of reuse behavior is 
widely studied, as over 60% of users adopt this behavior [ 2]. Second, users may 
also choose popular passwords that are easy to remember, and make changes to 
them. This behavior is also observed in previous studies [ 30]. For example, users 
may change 123456 to 123456!! due to the password policy of a specific site. 
Third, users can reuse parts of popular passwords. This means that even if a 
user does not modify popular passwords in a direct manner, the modified pass-
word can contain segments from popular passwords. For instance, when a user 
chooses mailpass, though she may have not reused popular a password inten-
tionally, this password in fact contains pass, which is a segment taken from the 
popular password “password”, hindering the password’s strength (see details in 
Sect. 4.2). 

The observations above expand the border of users’ password reuse behaviors 
to a great extent, from reusing sister passwords to reusing popular passwords 
and parts of them. Though this behavior is not as common as reusing sister 
passwords, taking such behavior into consideration is beneficial, especially when 
we have to capture users’ password reuse behaviors when sister passwords of 
users are not available. In light of this perspective to understanding password 
reuse, we, for the first time, are able to apply credential tweaking models to 
practical password strength evaluation scenarios. 

Specifically, as shown in Fig. 1, in order to make credential tweaking models 
learn how users reuse popular passwords or parts of them, we implement a 
matching phase to derive an intermediate dataset. Given a popular password 
dictionary and a training set, we traverse the entire training password dictionary 
to pair these passwords with popular passwords by employing similarity metric, 
forming password pairs. When multiple popular passwords have the similarity 
score above a certain threshold with a given password, we choose top-k (e.g. 
k = 5) popular passwords with the highest similarity, obtaining password pairs
〈ppw1, pw〉, 〈ppw2, pw〉,...,〈ppwk, pw〉, where  ppw denotes a popular password, 
and pw represents password in the training dictionary. These password pairs 
compose the intermediate dataset for credential tweaking models to be trained 
on. In the case where only one password dataset is available, the entire dataset 
is the training dictionary as a whole, and we draw top m passwords, with m 
determined by a frequency threshold (e.g. 500) or a predefined number (e.g. 
103), to form the popular password dictionary. See Appendix A for details. 

Using the technical route above, now we are able to derive an intermediate 
dataset containing password pairs, where every password pair consists of a popu-
lar password and a similar password. Given that credential tweaking models essen-
tially use password pairs during training [ 18, 26], the intermediate training set we
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123456 

password 

abc123 

letmein 

… 

Alice123 

wang123 

LetMeIn 

p@ssword123 

… 

<123456, Alice123> 

<abc123, Alice123> 

<123456, wang123> 

<abc123, wang123> 

<letmein, LetMeIn> 

<123456, p@ssword123> 

<password, p@ssword123> 

<abc123, p@ssword123> 
Popular password 

dic onary 
Training password 

dic onary 

Intermediate dataset 
containing password pairs 

Similarity matching 

Fig. 1. The process of generating an intermediate dataset. For each password in the 
training password dictionary, we use similarity metric to find matches above a similarity 
threshold in the popular password dictionary, forming a number of password pairs. 

described above can serve as a training set for these models. This approach enables 
the use of credential tweaking models for practical password strength evaluation, 
where models can be utilized to learn the reuse behaviors of popular passwords or 
their segments, instead of the reuse of sister passwords. 

The technical route we propose answers the first research question (RQ1): 
it is possible to capture users’ behavior of modifying or reusing popular pass-
words. As sister passwords of users are no longer required in this case, credential 
tweaking models can be utilized in password strength evaluation. This technical 
route is highly scalable, as the generation of an intermediate dataset is not lim-
ited to using only one dataset. In fact, one can use predefined lists of popular 
passwords instead of top passwords drawn from a single dataset, or choose a 
different dataset for top passwords selection. 

3.2 Pass2Edit: A Multi-step Decision Model for Credential 
Tweaking Attacks 

Among the numerous credential tweaking models, Targuess-II [ 25], Pass2Path 
[ 18], Pass2Edit [ 26] and  RFGuess [  27] are  the most promising. The  model sizes  of  
different credential tweaking models are shown in Table 1. We choose Pass2Edit  
as the base model for our EditPSM, since Pass2Edit is more accurate than 
Pass2Path and Targuess-II, and has the smallest model size. Note that other 
frameworks can also be utilized as the base model of our framework, since the 
capability to capture password reuse behavior and a probabilistic output are the 
only requirements. More concretely, Pass2Edit is a deep learning model based 
on neural networks, which is observed to have stronger generalization ability 
compared with statistic-based models. It uses Gated Recurrent Network as the 
backbone of its model architecture, and predicts how users modify a password 
by learning their reuse behaviors. 

Pass2Edit [ 26] is built under the intuition that users edit existing passwords 
character by character. To be specific, given a password pair containing a user’s 
new password and a sister password at another service, Pass2Edit learns the 
character-level edit operations needed for the sister password to be transformed 
into the new password. Consider a password pair 〈pw1, pw2〉, we define the edit
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Table 1. Model size of different credential tweaking models 

Model Targuess-II [ 25] RFGuess [ 27] Pass2Path [ 18] Pass2Edit [ 26] 
Size 1.04 G 121 M 40.1 M 8.62 M 

sequence needed to transform pw1 into pw2 as a series of atomic, character-level 
edit operations t = t1, t2, ..., EOS, where  EOS is the end-of-sequence symbol 
indicating that the transformation is complete. Note that though multiple edit 
sequences is possible, we obtain the sequence via the calculation of edit distance, 
and only choose a single edit sequence that has the shortest length. Formally, 
we define these character-level edit operations as follows: 

t = {(IN S, p, c)|p ∈ N, c  ∈ Σ} ∪ {(DEL, p)|p ∈ N} ∪ {EOS}, (2) 

where p and c are the position and the character to be inserted or deleted, IN S 
and DEL stand for insertions and deletions, Σ represents the character set, and 
N is the set for natural numbers. When the model modifies a sister password, it 
predicts edit operations consecutively, applying previous operations to the orig-
inal password. This is a multi-step generation task, where the model outputs an 
edit operation for the current password that has undergone a series of transfor-
mations. It’s obvious that when we limit the maximum length of passwords, the 
total number of atomic operations is finite and definite. We follow the settings 
of the original Pass2Edit work [ 26], where the total number of operations |t| is 
1,561. Therefore, for Pass2Edit, the process of generating guesses is a multi-step 
1,561-class classification problem. 

v0 v0 v1 v1 v2 v2 v3 v3 v4 v4 v5 v5 v0 v0 v1 v1 v2 v2 v3 v3 v4 v4 v5 v5

vv
<INS, ‘d’, 3> 

Fig. 2. The architecture of Pass2Edit [ 26], with an example of how it works in a single-
step prediction. The model takes the original and the current passwords as inputs, and 
predicts the next edit operation, applying it to the current password. The updated 
current password then serves as input for the next step in a multi-step generation. 

As shown in Fig. 2, Pass2Edit [ 26] uses gated recurrent units (GRU) [ 10] as  
the backbone of its architecture. For predictions within a single step, characters 
in the original and current passwords are input to an embedding layer, then
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concatenated according to their positions. These embeddings are later passed 
to a 3-layer GRU (256 dimensions for each layer), and the output for the last 
character goes through two fully-connected layers, obtaining probabilities for 
every possible edit operation using a softmax layer. In order to generate the 
password with the highest probability, the model applies the most probable 
operation to the current password at every step, and uses this new password 
as input for the next step. This process terminates when an EOS is predicted, 
indicating that the transformation should come to an end. 

The process above can only attain one single result. To generate more guesses, 
beam-search is applied to extract more outputs of the model. While enumerating 
guesses is also crucial, we do not elaborate on this process as we use Pass2Edit for 
password strength evaluation, only the training process of Pass2Edit is necessary 
for our model building. 

alice123 

123456 

password 

abc123 

letmein 

… 

abc123 
alice123 

<abc123, abc123> 

<abc123, a c123> 

<abc123, alc123> 

<ab c123, alic123> 

<ab c123, alice123> 

<DEL, 1> 

<INS, ‘l’, 1> 

<INS, ‘i’, 2> 

<INS, ‘e’, 3> 

<EOS> 

Pass2Edit Framework 

Popular password 
dic onary 

Mul -step transforma on 

Mul -step edit opera ons 

Password to evaluate: 

p(<DEL,1>) 
=0.12 

p(<INS,’l’,1>) 
=0.02 

p(<EOS>) 
=0.26 

p(<INS,’i’,2>) 
=0.17 

p(<INS,’e’,3>) 
=0.03 

output=p(<DEL,1>)*p(<INS,’l’,1>)*p(<INS,’i’,2>)*p(<INS,’e’,3>)*p(<EOS>)=3.18 × 10−6 

Pre-processingsimilarity matching Distribu on extrac on 

Probability 
calcula on<DEL, 1>: Edit opera on 

<abc123, alc123>: Password pair 

: Probability distribu on 
of opera ons 

Password pair 
(matched using 

cosine similarity) 

Trained Pass2Edit model 
(GRU-based deep learning 

model) 

Fig. 3. Simplified workflow of EditPSM during a password strength evaluation on-
demand. For a given password, EditPSM finds the most similar popular password, 
forming a password pair which serves as input to the Pass2Edit framework. EditPSM 
further extracts the probability for edit operations from the multi-step prediction of 
Pass2Edit, obtaining the final probability (i.e. guessability) of the given password. 

3.3 Modeling Password Strength Using EditPSM 

The usage of EditPSM for password strength evaluation consists of three phases: 
matching, training, and strength estimation. The matching phase utilizes a train-
ing dictionary and a popular password dictionary, then generates an intermediate 
dataset containing password pairs. As is described in Sect. 3.1, while these two 
dictionaries can be derived from one single training set, the popular password 
dictionary can be a predefined password list, or selected from a different dataset.
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In this work, for a fair comparison with other PSMs, we only use one single train-
ing set. Particularly, we use 2-gram cosine similarity score for our matching phase 
as recommended by Wang et al. [ 26]: 

sim (pwA, pwB ) =

∑
g∈G 

(count (pwA, g) ∗ count (pwB , g))
√∑

g∈G 
count2 (pwA, g)

√∑
g∈G 

count2 (pwB , g) 
, (3) 

where G is the set of all 2-gram substrings in pwA and pwB , and  count(pw, g) 
represents the count of substring g in pw. 

During the training phase of EditPSM, the intermediate dataset serves as 
input to Pass2Edit, and the model captures how users modify popular passwords 
and use segments of them to create new passwords. After matching and model 
training, we now have a model that can assign probabilities to any given password 
pair. Given a password pair 〈pw1, pw2〉, with its edit operation sequence being 
t = t1, t2, . . . , EOS, we can calculate the probability of this password pair as: 

Pr(〈pw1, pw2〉) = Pr(t1|pw1, pw1) × Pr(t2|pw1, pwcurr 
i )× 

. . .  × Pr(EOS|pw1, pwcurr 
n ), 

(4) 

where pwcurr 
i is the product of applying ti to pwcurr 

i−1 . When  pw1 is a popular 
password, it’s obvious that the higher this probability, the lower the security of 
pw2, since this probability essentially represents how likely pw2 is created reusing 
the popular password pw1. 

As shown in Fig. 3, in strength estimation phase where EditPSM evaluates 
a password on demand, it first finds the closest match of the password in the 
popular password dictionary. This matching process again results in a password 
pair that serves as input. The model then calculates the multi-step edit opera-
tions it requires for the popular password to be transformed into the password to 
evaluate. As the model outputs a probability distribution for every step in the 
transformation, EditPSM extracts the corresponding probability for each edit 
operation. After multiplying these probabilities step-by-step, the model gains 
the probability of the password pair, indicating the strength of the password 
to be evaluated. In a word, our EditPSM is a probabilistic password strength 
evaluation model that assigns probability to a password, where the probability 
reflects the likelihood of the password being created reusing popular passwords. 

In addition, other than how users modify popular passwords, the intermediate 
dataset also comprises characteristics entailed by password distributions, as it 
is derived from the given dataset. When trained on such intermediate dataset, 
the probability output by EditPSM also implies a given password’s probability 
within the password distribution observed in the given dataset. This enables 
EditPSM to estimate the strength of passwords that are not created by reusing 
popular passwords. The details are provided in Appendix A.
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4 Experimental Setups and Results 

4.1 Dataset Overview and Ethical Considerations 

We utilize 10 large-scale password dataset in the real world for our experi-
ments, in order to thoroughly evaluate the accuracy of EditPSM and its coun-
terparts. Our datasets cover different types of services and languages. Though 
these datasets seem to be a little old, as revealed by Bonneau [ 7] and Liu-Blocki 
[ 6], passwords change marginally over time. Therefore, these datasets are still 
representative. The details are shown in the following Table 2. 

Table 2. Datasets used in experiments and evaluation. 

Dataset Service type Language Leaked time Total PWs Unique PWs 
Tianya Social forum Chinese Oct. 2011 30, 901, 241 12, 898, 437 
Sina Portal Chinese Dec. 2011 19, 383, 163 3, 748, 140 
Dodonew Ecommerce Chinese Dec. 2011 16, 258, 891 10, 135, 260 
Zhenai Online dating Chinese Oct. 2011 5, 260, 229 3, 521, 764 
Weibo Social forum Chinese Dec. 2011 4, 730, 662 2, 828, 618 
Linkedin Job hunting English Jun. 2012 54, 656, 615 34, 334, 121 
Rockyou Social forum English Dec. 2009 32, 575, 500 14, 330, 075 
Yahoo Portal English Jul. 2012 5, 626, 485 3, 439, 492 
Gmail Email English Sept. 2014 4, 929, 086 3, 119, 299 
Phpbb Tech forum English Jan. 2009 255, 421 184, 389 

Ethical Considerations . While these datasets are leaked passwords and are 
publicly available, we still treat them with caution. In order to prevent further 
harm, we only present aggregated statistical information, avoiding potential leak-
age of personal information concerning emails, usernames, etc. As these data are 
available on the internet, the results in this work are reproducible. 

4.2 Password Reuse Based on Popular Passwords 

We design our EditPSM based on the intuition that users can modify popular 
passwords or use parts of them to create new passwords. To explore if users 
actually reuse popular passwords, for each dataset, we draw top 1,000 pass-
words as the popular password dictionary, and randomly select 104 passwords 
from the same dataset to save time. For each randomly selected password, we 
find a corresponding popular password with the highest similarity score (2-gram 
cosine similarity), and record the score which indicates the highest possible sim-
ilarity between a password and the popular passwords. We then calculate the 
distribution of those similarity scores.
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Fig. 4. Distribution of similarity score of sampled passwords in each dataset. The higher 
the similarity score, the more similar a password is with popular passwords observed 
in the corresponding dataset. It can be observed that Chinese datasets have a higher 
proportion of passwords that are highly similar to popular passwords. 

As shown in the cumulative distribution in Fig. 4(a), a large proportion of 
passwords are highly similar to popular passwords, with the similarity rep-
resented by cosine similarity scores. Non-cumulative distribution in Fig. 4(b) 
reveals that curves of most datasets have over one peak. Peaks in areas of high 
similarity indicate that a large proportion of passwords are highly similar to pop-
ular passwords. We believe the reason behind this relatively uneven distribution 
is the users’ reuse behaviors of popular passwords. Additionally, we observe that 
passwords in Chinese datasets tend to be more similar to popular passwords, 
compared with those in English datasets. This indicates Chinese users reuse 
passwords more often, which is consistent with Wang et al.’s conclusions [ 25]. 

4.3 Experimental Setup 

For password strength evaluation in online guessing scenarios we emphasize in 
this work, we choose 104 for the online guessing threshold as a rule of thumb. This 
threshold is also recommended by Wang et al. [ 24] in a systematic evaluation 
of PSMs. Generally speaking, there are two kinds of attackers that PSMs would 
have to defend against in online guessing scenarios [ 24]. 

Knowledgeable Attackers. As billions of passwords from different sites have 
been leaked and are publicly available [ 5, 31], we should be aware that some 
attackers can obtain leaked passwords from a specific service and learn its pass-
word distribution, hence targeting this service for a more effective attack. We 
refer to such strategy as the knowledgeable strategy, where the password distri-
bution in the target dataset is known by a knowledgeable attacker. This strategy 
is powerful and yet realistic, as many sites have leaked their passwords more than 
once. We simulate how PSMs perform confronting such strategy by evaluating 
their accuracy for top 104 passwords in the targeted service, as they are the most 
vulnerable ones under knowledgeable attacks.
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General Attackers. Attacker who failed to obtain the password distribution 
of the target service are referred to as general attackers. For general attackers, 
their ideal strategy would be to approximate the actual password distribution 
by utilizing common passwords (instead of the most popular ones) in the tar-
get dataset. As such passwords are often unavailable for general attackers, this 
ideal strategy should demonstrate their upper bound performance. We simulate 
this general strategy by randomly selecting 104 passwords from the test set, 
and observe the accuracy of PSMs on the strength evaluation of these sampled 
passwords. 

Table 3. Training and testing scenarios for every PSM 

Scenario # Language Training set A Training set #B∗ Test set 
1 Chinese Tianya Zhenai Weibo 
2 Weibo Sina 
3 Weibo Dodonew 
4 English Rockyou Phpbb Linkedin 
5 Gmail Yahoo 
6 Yahoo Gmail 

∗set #B is only used by fuzzyPSM [ 23], as it requires two training 
sets to characterize users’ password reuse behavior. 

We use the 10 large real-world datasets in Table 2 in our experiments, and set 
up six password strength evaluation scenarios for online guessing, three trained 
and tested on Chinese datasets, the other three trained and tested on English 
datasets. We conduct both the knowledgeable and general strategies for each 
scenario, and compare eight mainstream PSMs (see Sect. 2.2) with our EditPSM. 
As five PSMs require training data, the training set we use shall be as large as 
possible, ensuring the effectiveness of each PSM for a fair comparison. In this 
light, we follow the settings of Wang et al. [ 24] in a large-scale evaluation of 
PSMs, where they use Tianya and Rockyou datasets as training set A for PSMs 
requiring only one single training set. Since fuzzyPSM requires two training sets, 
an additional set #B is used. See Table 3 for more details. 

4.4 Evaluation Results 

For measuring the accuracy of PSMs in online guessing scenarios, we choose the 
Weighted Spearman metric (W Spearman in short) advocated by Wang et al. 
[ 24], as the research demonstrated the soundness of such metric. The calculation 
of W Spearman can be described as: 

W Spearman =
∑n 

i=1 [wi (xi − x̄) (yi − ȳ)]
√∑n 

i=1

[
wi (xi − x̄)2

] ∑n 
i=1

[
wi (yi − ȳ)2

] , (5)
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where xi and yi are the i-th elements of X and Y , the weighted rank vectors 
for outputs of ideal PSM and the tested PSM respectively, with wi being the 
corresponding weight that equals to the i-th password’s frequency. Note that 
x and y are weighted means of X and Y . W Spearman ranges from −1 to 1, 
with higher values indicating greater similarity between the outputs of the ideal 
PSM and the tested PSM, suggesting that the tested PSM is more accurate. As 
W Spearman is a single value for a given rank of passwords, we further utilize a 
W Spearman curve to show how PSMs perform as the rank of passwords changes. 
See Appendix B for more details on W Spearman curves. 

Performances of PSMs may vary greatly when evaluating different passwords, 
as no single metric or PSM can be the most effective for all passwords [ 12], 
especially when different datasets are considered. Additionally, as more insecure 
passwords can cause greater harm, more importance should be attached to pass-
words of lower ranks (i.e. more frequent and less secure). In this light, while 
we use W Spearman curves (Figs. 5, 7) to observe the general performances of 
PSMs, we record discrete W Spearman values at several benchmark password 
ranks, and calculate the increment for EditPSM over other PSMs as relative 
WSpearman (denoted as RW Spearman): 

RW Spearman = W SpearmanEditP SM − W SpearmanotherP SM (6) 

As shown in the heatmaps describing RW Spearmanrelative (Figs. 6, 8), we 
believe RW Spearmanrelative at different benchmarks (Rank = 10, 102 , 103 , and 
104) help the interpretation of results. Note that though at low ranks, PSMs with 
lower score may still classify these passwords as weak. However, since attackers 
attempts to crack as many accounts as possible within a limited guess budget, the 
effectiveness of PSMs is not measured as a classification problem, but a ranking 
problem, as is described by in the settings of an ideal PSM and online password 
evaluation scenarios (see Sects. 2.1 and 4.3 for details). By using these values, 
we can also calculate the improvement EditPSM achieves by using quantified 
results. 

In addition, results for general strategy demonstrate the robustness of PSMs 
as the tested passwords are randomly selected. Related experiments are based 
on random samples and are not cherry-picked. Note that the exact results may 
shift when passwords are chosen differently. 

Generally speaking, EditPSM is the best performing PSMs compared with 
its counterparts previously proposed by both academia and industry. Note that 
we do not claim EditPSM outperforms all counterparts in all cases, instead we 
claim EditPSM is among the few best-performing PSMs, and achieves similar or 
superior performance in general. 

When we compare EditPSM with industry-designed PSMs, our EditPSM 
greatly outperforms 12306 PSM [ 3] and Microsoft PSM [ 1]. Specifically, as shown 
in Figs. 6, 8, EditPSM achieves an average increment of 0.222 and 0.6833 in 
W Spearman for all benchmarks under both scenarios. This is within our expec-
tation, as PSMs proposed by industry often fall short on accuracy compared
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Fig. 5. Results for knowledgeable strategy. We mainly focus on these results, as test 
sets under knowledgeable strategy are based on true distributions of the ground truth. 
In these experiments, EditPSM is among the best-performing PSMs in all scenarios, 
demonstrating the potential of introducing credential tweaking models into password 
strength evaluation. 

Fig. 6. Heatmap for results at different benchmark password ranks under knowledge-
able strategy. Values within the heatmap indicate the increment (decrement if negative, 
rarely) in WSpearman value for EditPSM over the corresponding PSM. We can see that 
generally speaking, EditPSM is among the best performing PSMs, achieving significant 
increment for most PSMs. 

with their academia counterparts. As shown in Fig. 6, our EditPSM has similar 
performance (with an average increment of 0.01166 in all benchmarks for knowl-
edgeable strategy) with zxcvbn [ 29], the most promising PSM in the industry, 
and achieves an improvement of 0.045 on average for highly insecure passwords 
(i.e. at lower ranks of 10 and 102, see Fig. 8). 

For statistics- or similarity-based PSMs, it can be seen that EditPSM per-
forms significantly better than LPSE [ 14], having an average increment of 0.175 
on W Spearman for every experiment at all 4 benchmarks. As for PCFG-PSM 
[ 15], EditPSM achieves an improvement of 0.047 for knowledgeable strategy at 
all benchmarks in Figs. 5 and 6, and performs slightly better with an average 
increase of 0.0029 in general strategy. Specifically, as shown in Fig. 6, when tested
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Fig. 7. Results for general strategy. When tested passwords are randomly chosen for 
Chinese datasets, WSpearman value of EditPSM is usually above 0.5, while that of most 
other PSMs vary greatly (especially for passwords of lower ranks) as the password rank 
changes. This implies that EditPSM is the most stable PSM for experiments involving 
Chinese datasets, demonstrating its robustness. 

Fig. 8. Heatmap for results at different benchmark password ranks under general 
strategy. Values within the heatmap indicate the increment (decrement if negative) 
in WSpearman value for EditPSM over the corresponding PSM. As results for lower 
password ranks represents PSMs’ accuracy when assessing more insecure passwords, we 
can see that EditPSM could more accurately capture the strength for highly insecure 
passwords, even when these tested passwords are randomly chosen. 

passwords are randomly chosen (i.e. general strategy), the average WSpearman 
of EditPSM at rank = 10  is 0.137 higher than PCFG-PSM, implying that deep-
learning technique employed by EditPSM addresses the over-fitting issue faced 
by statistical models, such as PCFG-PSM. 

As our EditPSM is based on deep-learning, we emphasize on the comparison 
of EditPSM and two foremost deep-learning-based counterparts (i.e. CNN-PSM 
[ 19] and  RNN-PSM [  17]). As shown in Figs. 5, 6, among deep-learning-based 
PSMs, EditPSM performs the best. When compared with CNN-PSM using 
W Spearman metric, EditPSM greatly outperforms CNN-PSM [ 19] in almost all 
cases under the two strategies, with an average increment of 0.18 in all experi-
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ments at the 4 benchmarks. EditPSM achieves higher accuracy than RNN-PSM 
[ 17] under knowledgeable strategy, having the increase of 0.032 in W Spearman. 
This indicates that our work takes one further step towards introducing deep 
learning approaches into password strength evaluation. 

FuzzyPSM is the most prominent PSM for password strength evaluation 
in online guessing scenarios according to Wang et al. [ 24]. As fuzzyPSM also 
aims to capture users’ password reuse behavior, we focus on the details of how 
EditPSM performs compared to fuzzyPSM. As shown in Figs. 5 and 6, our pro-
posed EditPSM achieves a slightly higher accuracy than fuzzyPSM [ 23] under 
knowledgeable strategy, with an average improvement of 0.0254 in W Spearman 
at all benchmarks. We believe this improvement is the contribution of our new 
technical route: EditPSM learns more fine-grained password-level reuse behav-
iors, while fuzzyPSM essentially extracts dataset-level reuse behaviors, treating 
all passwords in the dataset as a whole. In general strategy, EditPSM is 0.089 
higher than fuzzyPSM on average, for password ranks of 10 and 102 (i.e. most 
insecure passwords, see Fig. 8). Since EditPSM uses deep learning framework, it 
outperforms fuzzyPSM which uses statistical method in avoiding over-fitting. 

The experimental results above answer the second research question (RQ2), 
as EditPSM reveals its effectiveness and comparably good performance, even 
compared with the foremost counterparts in both the industry and academia. 

4.5 Model Size and Speed 

As deep learning frameworks are often large and computationally intensive, the 
size and feedback speed of PSMs based on deep learning could impact their 
usability. We recorded the average time it took for deep-learning-based PSMs 
to evaluate password strength and their model size. These results are recorded 
from scenario #2, where the training set is Tianya and the test set is Sina. 

Table 4. Size and speed of deep-learning-based PSM. 

PSM Evaluation time per PW Model size 
EditPSM 2.71 ms 8.63 M 
CNN-PSM [ 19] 4.74 ms 88.4 M 
RNN-PSM [ 17] 1.72 ms 8.77 M 

As  shown in Table  4, we can see that among the three deep-learning-based 
PSMs, EditPSM is the smallest in size and achieves satisfactory speed. Since 
we conducted our experiments on a single NVIDIA GeForce RTX 3090 GPU, 
we believe EditPSM is fast enough for most service providers. Additionally, like 
RNN-PSM, EditPSM can also be compressed and deployed on the client side 
using optimizations and compressing techniques of Melicher et al. [ 17].
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5 Conclusion 

In this paper, we propose an effective deep-learning-based password strength 
meter utilizing credential tweaking models, namely EditPSM. By introducing 
a brand-new technical route that focuses on users’ password reuse behaviors, 
EditPSM is the first password strength evaluation model that employs targeted 
password guessing frameworks based on password reuse, without requiring users’ 
sister passwords (i.e., passwords leaked at other sites). We also look into how 
users create passwords by modifying popular passwords or using its segments, 
hence expanding the border of users’ password reuse behavior. 

Through extensive experiments with 10 large real-world datasets and com-
parisons with 8 mainstream password strength meters, we have demonstrated 
the effectiveness of EditPSM. For the first time, we find that credential tweak-
ing models, the most effective type of targeted password guessing models, can be 
well applied to practical password strength evaluation scenarios, even when sis-
ter passwords are unavailable. We believe our work takes one firm step towards 
introducing targeted password guessing models into password strength evalua-
tion, and contributes to better understanding users’ password reuse behavior. 
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Appendix A Setups for EditPSM and some other PSMs 

EditPSM. For model training and parameter tuning, we follow the setups in the 
original paper for Pass2Edit [ 26]. However, in order to accelerate training speed, 
we use a cut-off frequency threshold for training passwords. Specifically, when we 
match passwords in the training set with popular passwords, we select passwords 
above a certain frequency threshold. In this work, we use f = 100 for both Tianya 
and Rockyou datasets when used as training sets, and use top 1,000 passwords 
as popular passwords respectively. Though this cut-off process losses information 
in the training set, potentially hindering the effectiveness of EditPSM, EditPSM 
can be trained within minutes on Tianya or Rockyou dataset. This is useful in 
practice, as though we did not demonstrate the scalability of EditPSM when 
predefined popular password dictionary are applied, the ability to quickly adjust 
to new situations is important in practice. Furthermore, this indicates that the 
evaluation results only demonstrate the lower-bound performance of EditPSM. 

Additionally, the training set contains duplicate passwords. For a password 
that has appeared m times in the training set, its corresponding password pairs 
appear m×k times, with k being the total matches found in the popular password 
dictionary. Using this setting, EditPSM can learn not only the users’ behaviors 
of reusing popular passwords, but also the distribution of in the given dataset.
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RNN-PSM. As there are numerous parameter settings that came along the 
source code 1 of RNN-PSM [ 17], for the reproducibility of results, we explicate our 
parameter choices in our experiments. We follow the Melicher et al.’s settings [ 17] 
for the client-side model. That is, 3 LSTM layers with a hidden size of 256, and 2 
fully-connected layers with 128 dimensions. As this setting has achieved similar 
or superior performance described in [ 24], it can guarantee fair comparison. 

Microsoft PSM. Currently, Microsoft deploys a PSM in Edge browser, which 
shows password strength upon registration for other services for users of Edge. 
Though this update makes the performance of Microsoft PSM more crucial as it 
affects more users, we are unable to obtain the underlying mechanism for their 
new PSM at the time. We use the older version of Microsoft PSM in this work, 
as is also employed by and described in [ 1, 24]. 

Treating Anomalous PSM Outputs. Some PSMs do not output valid results 
for all input passwords. For example, zxcvbn do not output a valid result for 
passwords that contained only a space. We replace these results with zeros, and 
compute W Spearman accordingly. This helps in making a fairer comparison, as 
invalid outputs should be considered as a defect of such PSMs, and the zeros we 
assigned would most likely result in a decrease in their W Spearman. 

Appendix B The Calculation of WSpearman Curves 

WSpearman [ 13, 24] represents the similarity between two weighted rank vectors. 
To obtain WSpearman curve as the password ranks increases, we first calculate 
the whole rank vectors consisting 104 elements. Later, for any given rank r, the  
corresponding WSpearman value can be calculated as: 

W Spearmanr = W Spearman(X[: r], Y  [: r]), (7) 

where X[: r] and Y [: r] represents the first r elements of weighted rank vectors 
X and Y respectively. W Spearman proposed in [ 24] did not specify on how to 
calculate W Spearman when the rank is 1, or when all elements in a vector has 
the same value. As these two cases result in divisions by 0, for the first case we 
define W Spearman = 1, as it only affects the first value in the curve. For the 
second case, we adjust the calculation for rank values within the same rank. For 
n tied elements with the same rank [a0 

j , a
1 
j , ..., an 

j ], the rank value of ai 
j is: 

rankj = aj +
∑i 

k=0 wk 

i
× i + 1  

2 
, (8) 

where wk is the weight of elements at location k within the tied elements. This 
adjustment only affect PSMs that output identical values for a large number 
of passwords, such as 12306 PSM and Microsoft PSM, as they only output 3
1 see at https://github.com/cupslab/neural_network_cracking.. 

https://github.com/cupslab/neural_network_cracking.
https://github.com/cupslab/neural_network_cracking.
https://github.com/cupslab/neural_network_cracking.
https://github.com/cupslab/neural_network_cracking.
https://github.com/cupslab/neural_network_cracking.
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or 4 different values for all passwords within the test set. The results of other 
PSMs remain unchanged after this adjustment. Hence, we believe our slight 
modification does not affect the soundness of the weighted spearman metric. 
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