

项目地址：Wenjun-Ji/BiRefNet.top

在线网站：General Scenario Intelligent High-precision Parsing

天津市市赛获奖证书：

Commit 记录如下，

EditPSM: A New Password Strength
Meter Based on Password Reuse via Deep

Learning

Yifei Zhang1, Zhenduo Hou2(B), Yunkai Zou2, Zhen Li2, and Ding Wang2

1 College of Computer Science, Nankai University, Tianjin, China
2 College of Cryptology and Cyber Science, Nankai University, Tianjin, China

joehou13@nankai.edu.cn

Abstract. Password guessing attacks and users’ vulnerable password
behaviors pose severe threats to password security, and accurate pass-
word strength meters (PSMs) can mitigate these threats by nudging users
to choose secure passwords. In this light, PSMs have been deployed by
nearly every respectable web service and application during registration
or password reset. However, most PSMs in both academia and industry
only focus on the structural and semantic features of the password itself,
and failed to capture users’ vulnerable password reuse behaviors.

To fill this gap, we propose a new PSM, namely EditPSM, that takes
users’ password reuse behaviors into consideration. EditPSM is based on
a targeted password guessing framework via deep learning, and does not
require users’ existing passwords to protect users’ privacy. It utilizes pop-
ular passwords identified in the training set and learns how users modify
them. This leads to credential tweaking models, a type of targeted pass-
word guessing model, to effectively evaluate password strength without
needing access to users’ existing passwords. Through extensive evalua-
tions involving 10 large-scale datasets and 8 mainstream PSMs in the
real world, EditPSM demonstrates its superior performance over prior
art. We believe this work makes a substantial step towards introducing
targeted password models into password strength evaluation.

Keywords: Password strength evaluation · Password security · Users’
behavior · Deep learning

1 Introduction

Serving as a line of defense for users’ cyber security and privacy, textual password
firmly remains one of the most dominant methods in authentication due to their
simplicity to use and low cost to deploy [8]. While passwords are widely used for
authentication, effective password guessing models and users’ vulnerable behav-
iors upon password selection pose significant threats to password security [7, 22].
In order to protect users from potential harm, it is vital for service providers to
guide users to choosing more secure passwords.

Accurate password strength meters (PSMs) can provide timely feedback to
users, hence assist users in creating stronger passwords [20, 24]. As a result,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D. Lin et al. (Eds.): Inscrypt 2024, LNCS 15543, pp. 255–276, 2025.
https://doi.org/10.1007/978-981-96-4731-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4731-6_13&domain=pdf
https://doi.org/10.1007/978-981-96-4731-6_13

256 Y. Zhang et al.

nearly every respectable service now employs a PSM upon user registration or
password reset, as an effort to encourage stronger passwords that can better
resist password guessing [24]. For example, both 12306 [3] (A Chinese train
ticket booking website) and Microsoft Edge browser [4] have employed PSMs
that can show users the strength of their passwords in a binned form.

However, research has found that only PSMs providing accurate feedback can
help users choose stronger passwords, those that are inaccurate would even do
more harm than good [13, 24]. To address this issue, both academia and indus-
try have made efforts to design accurate and robust PSMs in the past years.
Pattern- and rule- based PSMs, such as zxcvbn [29], evaluate passwords based
on character types (lowercase and uppercase letters, digits and symbols, etc.)
or patterns observed in the password, and are widely used by service providers.
Probabilistic-based PSMs, such as PCFG-PSM [15] and fuzzyPSM [23], are pre-
ferred by the academia. Mostly derived from trawling password guessing models
[28], these PSMs assign probabilities to passwords. The lower the probability, the
more secure the password is. Deep learning approaches to evaluating passwords
have also been proposed, but prior work (see [13, 24]) deems that they fail to
outperform their foremost counterparts of other technical routes.

Although numerous PSMs have been proposed over the years, most of them
merely focus on the structural and semantic features of passwords. Their eval-
uation of password strength is largely based on password composition or distri-
bution, overlooking users’ vulnerable reuse behaviors. To the best of our knowl-
edge, among mainstream PSMs, only fuzzyPSM [23] and vec-PPSM [18] take
users’ password reuse behaviors into consideration. Based on statistical meth-
ods, fuzzyPSM does not learn how passwords are reused individually, instead
it treats all passwords in a dataset as a whole, and learns how passwords in
one dataset are constructed by reusing segments or editing whole passwords
from another dataset. However, the statistical method employed by fuzzyPSM
[23] limits its ability to capture more complex reuse behaviors. Vec-ppsm, on
the other hand [18], requires sister passwords (i.e., a password of the same user
leaked by other services), raising privacy concerns for its real-world deployments.

Additionally, academia-designed PSMs are mostly based on password guess-
ing models. The intuition is that as they can crack passwords, they can also
estimate password strength from attackers’ perspectives [15, 17]. As the best-
performing type of password guessing frameworks, credential tweaking (i.e.,
reuse) models modify users’ sister passwords to generate new guesses, achieving
staggering success rates of nearly 70% [26, 30]. However, designing PSMs based
on password reuse behaviors without users’ sister passwords remains a challenge.

1.1 Motivations

Recent research has found that users’ insecure password behavior could greatly
endanger the security of passwords [11, 25]. According to a recent survey con-
ducted by the LastPass security enterprise [2], over 65% of users tend to directly
reuse or slightly modify a sister password to create passwords for a new service.
Most PSMs in both academia and industry, however, fail to capture such user

EditPSM: A New PSM Based on Password Reuse via DL 257

behaviors, focusing only on password composition and distribution. In contrast,
in the design of password guessing models, the academia is well aware of users’
reuse behaviors, and has made efforts to design various credential tweaking mod-
els exploiting users’ sister passwords. The situations stated above give rise to the
following two key research questions (RQs) :

RQ1: How to design a PSM based on credential tweaking model that can cap-
ture users’ password reuse behaviors without knowing user’s sister password?

RQ2: If a PSM derived from a credential tweaking model can be constructed,
how can it ensure the performance over existing PSMs in prior art?

To answer the research questions above, we design and implement a PSM
aiming to capture users’ password reuse behavior, namely EditPSM, without
requiring access to the users’ sister passwords (leaked passwords), based on the
mainstream credential tweaking model Pass2Edit [26]. Furthermore, we evaluate
and show the performance of our EditPSM.

1.2 Contributions

We summarize our contributions in this work as follows:

A New Technical Route. To use credential tweaking models in password
strength evaluation when users’ sister passwords are unavailable, we present a
brand-new and generic technical route that draws top passwords in an untar-
geted, fairly ordinary password dictionary, and further derives an intermediate
training set. Such an intermediate training set can be utilized by any credential
tweaking model, enabling these models to learn users’ password reuse behavior.

A New Password Strength Meter. We, for the first time, introduce creden-
tial tweaking models to practical password strength evaluation. Our proposed
EditPSM employs a deep learning framework, and can capture users’ reuse
behaviors. By generating an intermediate training set from a single password
dictionary, EditPSM does not require sister passwords of any specific user to
learn users’ password reuse behavior, as they are unavailable in practical cases.
While fuzzyPSM captures users’ reuse behavior at dataset level and requires
two distinct password datasets [23], our EditPSM captures users’ reuse behav-
iors password by password, with only one password dataset as the minimum
requirement.

Extensive Evaluation. We conduct a series of experiments involving 10 large
real-world datasets and 9 password strength meters, including 8 mainstream
PSMs and our proposed EditPSM, and measured their accuracy. The results
demonstrate the effectiveness of our EditPSM, and validate our claim that cre-
dential tweaking models can also be applied to practical password strength eval-
uation scenarios, while outperforming other PSMs.

258 Y. Zhang et al.

Some Insights. Previous work put emphasis on reusing sister passwords, pre-
suming that users’ password reuse behaviors is limited only to modifying their
own passwords [11]. In contrast, we observe that a large proportion of passwords
are similar with popular passwords, indicating users also modify popular pass-
words or use segments of popular passwords to create new ones. Furthermore,
we find that this behavior differs for users of different languages, Chinese and
English users to be specific. These observations provide a new perspective for
understanding password reuse.

2 Preliminaries and Related Work

In this section, we elaborate on the preliminaries of a PSM based on targeted
password guessing frameworks, and briefly review related work.

2.1 Evaluating Password Strength Using PSMs

Real-World Password Strength Evaluation Scenarios. Password strength
should be evaluated under both online and offline guessing scenarios. In the
online guessing scenario, PSMs are designed to defend against both trawling
and targeted guessing attacks. However, existing PSMs fall short of evaluating
password strength in response to this threat, as they unrealistically require users’
sister passwords, causing privacy concerns. In offline guessing scenarios, PSMs
focus on evaluating the time required to crack a hashed password leaked from a
service provider. In this work, we mainly focus on the more threatening online
guessing scenario, and leave offline guessing scenarios as future work.

Password Strength Meters. The most common and practical way to evaluate
password strength is to use password strength meters (PSMs) [21]. For password
strength evaluation in online guessing scenarios, an ideal meter [23] should pre-
cisely reproduce the probability distribution χ of passwords in a target dataset.
Such an ideal meter can be described as:

M(pw) = ppw, ∀pw ∈ Γ, (1)

where ppw is the true (but not known) probability of password pw drawn from χ.
This meter is ideal because when an attacker attempts to guess user passwords
online without prior knowledge of a specific user, his best strategy would be
guessing in descending order of password probability against the targeted ser-
vice [7]. Hence, this meter could ideally prevent users from selecting passwords
vulnerable to such guessing schemes. In this light, any real-world PSM can be
seen as an approximation of this ideal meter, and we could evaluate the accuracy
of a PSM by comparing the outputs of such PSM with that of the ideal meter.
We will describe this evaluation procedure in detail in Sect. 4.4.

EditPSM: A New PSM Based on Password Reuse via DL 259

2.2 Previous PSMs

Both academia and industry have proposed various PSMs. We choose eight rep-
resentative PSMs to be compared with our proposed EditPSM. As those PSMs
are in different technical routes, we now look into their characteristics.

Industry-Designed PSMs. We select the representative 12306 PSM [3],
Microsoft PSM (as described in [1, 24]) and zxcvbn PSM [29] from the industry
to be compared with EditPSM. 12306 PSM is implemented by 12306, a website
for train ticket booking for millions of travelers in China, and Microsoft PSM
was once adopted by services such as Outlook and Skype. They are real-world
PSMs that serve billions of users, hence we believe the performances of these
PSMs reflect the general standards prevalent in industry-designed PSMs. Fol-
lowing the recommendations of Melicher et al.’s [17], we use zxcvbn to represent
best-performing PSMs in the industry. All Industry-designed PSMs above do
not require training sets.

Statistics-Based and Similarity-Based PSMs. PCFG-PSM [15] is based
on one classic guessing framework, probabilistic context-free grammar password
guessing model. As Wang et al. [23] have found that PCFG-PSM performs better
than Markov-PSM [9], we use PCFG-PSM in this work for comparison. For
similarity-based PSMs, we use LPSE proposed in [14], which evaluates passwords
by using the similarity between the user’s password and the standard strong
password, without using any training dataset.

Deep-Learning-Based PSMs. At USENIX Sec’17, Melicher et al. [17] pro-
posed a password guessing model based on Recurrent Neural Networks, and
designed RNN-PSM based on the model’s output probability. The framework
they designed could be compressed to as little as a few hundred kilobytes and
could be deployed client-side. Another example of deep-learning-based PSMs is
the CNN-PSM proposed in [19] that utilizes Convolutional Neural Networks. The
PSM they designed is highly interpretable and provides character-level strength
feedback. We use the source code generously open-sourced by the authors of
these PSMs, as to avoid incorrect implementations leading to biased results.

Reuse-Based PSMs. Currently, two PSMs stand out for their efforts in
capturing password reuse behavior: fuzzyPSM [23] and vec-PPSM [18]. Essen-
tially, fuzzyPSM is an improvement of PCFG-PSM, employing the same statis-
tical methods to capture user’s password reuse behavior at the dataset level.
FuzzyPSM assumes that all passwords in one dataset are constructed by reusing
segments or passwords from another dataset, and is trained on two differ-
ent training sets to learn such reuse behavior. According to a recent study
[24], fuzzyPSM is currently the best performing PSM when considering online
scenarios. However, as fuzzyPSM requires two distinct password datasets, its

260 Y. Zhang et al.

application to real-world situations is limited. Furthermore, statistical method
that fuzzyPSM employed suffers from overfitting and sparsity issues [16], lack-
ing generalization ability. Vec-PPSM, though based on a credential-tweaking
model, requires sister passwords of users, which are considered as sensitive data.
Since the use of such data is impractical, we only evaluate the performance of
fuzzyPSM for comparison.

2.3 Password Reuse Behaviors and Targeted Password Guessing

Users’ Password Reuse Behaviors. According to surveys conducted by pre-
vious works [2, 11, 23], over 65% of users tend to directly reuse or slightly modify
existing passwords for new services. These behaviors expose users to credential
tweaking attacks, a form of targeted password guessing attacks where attackers
exploit leaked passwords (sister passwords) of a specific user. Worse still, increas-
ingly common password file leaks [5, 31] over the years have provided attackers
with sufficient sister passwords for such attacks. While attackers can have access
to users’ sister passwords, they aren’t available in most cases for service providers
as they are sensitive data. This makes it difficult for PSMs deployed in online
services to model users’ password reuse behavior.

Targeted Password Guessing Frameworks. There are two main types of
targeted guessing frameworks, one focuses on exploiting users’ personal infor-
mation, and the other utilizes users’ sister passwords (i.e., credential tweaking
attacks) [18, 25, 26]. In this work, we mainly consider those that are based on
password reuse, also known as credential tweaking models.

Credential tweaking models learn how users modify existing passwords and
apply them to guess other passwords of the same user. Statistical methods are
first employed to learn users’ reuse behaviors. For instance, Targuess-II [25] uti-
lizes a probabilistic context-free grammar, achieving the success rate of a stag-
gering 70% within 1,000 guesses when only one leaked password is provided.
Deep learning-based models [18, 26] were later demonstrated to be even more
effective. For example, Pass2Path uses a neural network to learn users’ password
modifications on the character level, and predicts a sequence of edit operations
for a given sister password [18]. These models were mostly made in academia to
simulate attackers’ targeted guessing attacks. However, few works have success-
fully found effective defense mechanisms by utilizing credential tweaking models,
as sister passwords are unavailable in most cases for service providers.

3 EditPSM: A New Password Strength Evaluation Model
Based on Password Reuse via Deep Learning

We now elaborate on EditPSM, a new PSM based on a credential tweaking
model. First, we explicate how applications of these models are made possible
using our brand-new technical route.

EditPSM: A New PSM Based on Password Reuse via DL 261

3.1 Extract Reuse Behaviors Using Credential Tweaking Models

Applying credential tweaking models to password strength evaluation is not
a straightforward task: sister passwords of users are unavailable to service
providers in most cases. To address this problem, we analyze reuse behavior
from a different perspective. When users reuse passwords by modifying exist-
ing passwords, three main reuse behaviors exist. First, users can modify sister
passwords they used for a different service [11]. This type of reuse behavior is
widely studied, as over 60% of users adopt this behavior [2]. Second, users may
also choose popular passwords that are easy to remember, and make changes to
them. This behavior is also observed in previous studies [30]. For example, users
may change 123456 to 123456!! due to the password policy of a specific site.
Third, users can reuse parts of popular passwords. This means that even if a
user does not modify popular passwords in a direct manner, the modified pass-
word can contain segments from popular passwords. For instance, when a user
chooses mailpass, though she may have not reused popular a password inten-
tionally, this password in fact contains pass, which is a segment taken from the
popular password “password”, hindering the password’s strength (see details in
Sect. 4.2).

The observations above expand the border of users’ password reuse behaviors
to a great extent, from reusing sister passwords to reusing popular passwords
and parts of them. Though this behavior is not as common as reusing sister
passwords, taking such behavior into consideration is beneficial, especially when
we have to capture users’ password reuse behaviors when sister passwords of
users are not available. In light of this perspective to understanding password
reuse, we, for the first time, are able to apply credential tweaking models to
practical password strength evaluation scenarios.

Specifically, as shown in Fig. 1, in order to make credential tweaking models
learn how users reuse popular passwords or parts of them, we implement a
matching phase to derive an intermediate dataset. Given a popular password
dictionary and a training set, we traverse the entire training password dictionary
to pair these passwords with popular passwords by employing similarity metric,
forming password pairs. When multiple popular passwords have the similarity
score above a certain threshold with a given password, we choose top-k (e.g.
k = 5) popular passwords with the highest similarity, obtaining password pairs
〈ppw1, pw〉, 〈ppw2, pw〉,...,〈ppwk, pw〉, where ppw denotes a popular password,
and pw represents password in the training dictionary. These password pairs
compose the intermediate dataset for credential tweaking models to be trained
on. In the case where only one password dataset is available, the entire dataset
is the training dictionary as a whole, and we draw top m passwords, with m
determined by a frequency threshold (e.g. 500) or a predefined number (e.g.
103), to form the popular password dictionary. See Appendix A for details.

Using the technical route above, now we are able to derive an intermediate
dataset containing password pairs, where every password pair consists of a popu-
lar password and a similar password. Given that credential tweaking models essen-
tially use password pairs during training [18, 26], the intermediate training set we

262 Y. Zhang et al.

123456

password

abc123

letmein

…

Alice123

wang123

LetMeIn

p@ssword123

…

<123456, Alice123>

<abc123, Alice123>

<123456, wang123>

<abc123, wang123>

<letmein, LetMeIn>

<123456, p@ssword123>

<password, p@ssword123>

<abc123, p@ssword123>
Popular password

dic onary
Training password

dic onary

Intermediate dataset
containing password pairs

Similarity matching

Fig. 1. The process of generating an intermediate dataset. For each password in the
training password dictionary, we use similarity metric to find matches above a similarity
threshold in the popular password dictionary, forming a number of password pairs.

described above can serve as a training set for these models. This approach enables
the use of credential tweaking models for practical password strength evaluation,
where models can be utilized to learn the reuse behaviors of popular passwords or
their segments, instead of the reuse of sister passwords.

The technical route we propose answers the first research question (RQ1):
it is possible to capture users’ behavior of modifying or reusing popular pass-
words. As sister passwords of users are no longer required in this case, credential
tweaking models can be utilized in password strength evaluation. This technical
route is highly scalable, as the generation of an intermediate dataset is not lim-
ited to using only one dataset. In fact, one can use predefined lists of popular
passwords instead of top passwords drawn from a single dataset, or choose a
different dataset for top passwords selection.

3.2 Pass2Edit: A Multi-step Decision Model for Credential
Tweaking Attacks

Among the numerous credential tweaking models, Targuess-II [25], Pass2Path
[18], Pass2Edit [26] and RFGuess [27] are the most promising. The model sizes of
different credential tweaking models are shown in Table 1. We choose Pass2Edit
as the base model for our EditPSM, since Pass2Edit is more accurate than
Pass2Path and Targuess-II, and has the smallest model size. Note that other
frameworks can also be utilized as the base model of our framework, since the
capability to capture password reuse behavior and a probabilistic output are the
only requirements. More concretely, Pass2Edit is a deep learning model based
on neural networks, which is observed to have stronger generalization ability
compared with statistic-based models. It uses Gated Recurrent Network as the
backbone of its model architecture, and predicts how users modify a password
by learning their reuse behaviors.

Pass2Edit [26] is built under the intuition that users edit existing passwords
character by character. To be specific, given a password pair containing a user’s
new password and a sister password at another service, Pass2Edit learns the
character-level edit operations needed for the sister password to be transformed
into the new password. Consider a password pair 〈pw1, pw2〉, we define the edit

EditPSM: A New PSM Based on Password Reuse via DL 263

Table 1. Model size of different credential tweaking models

Model Targuess-II [25] RFGuess [27] Pass2Path [18] Pass2Edit [26]
Size 1.04 G 121 M 40.1 M 8.62 M

sequence needed to transform pw1 into pw2 as a series of atomic, character-level
edit operations t = t1, t2, ..., EOS, where EOS is the end-of-sequence symbol
indicating that the transformation is complete. Note that though multiple edit
sequences is possible, we obtain the sequence via the calculation of edit distance,
and only choose a single edit sequence that has the shortest length. Formally,
we define these character-level edit operations as follows:

t = {(IN S, p, c)|p ∈ N, c ∈ Σ} ∪ {(DEL, p)|p ∈ N} ∪ {EOS}, (2)

where p and c are the position and the character to be inserted or deleted, IN S
and DEL stand for insertions and deletions, Σ represents the character set, and
N is the set for natural numbers. When the model modifies a sister password, it
predicts edit operations consecutively, applying previous operations to the orig-
inal password. This is a multi-step generation task, where the model outputs an
edit operation for the current password that has undergone a series of transfor-
mations. It’s obvious that when we limit the maximum length of passwords, the
total number of atomic operations is finite and definite. We follow the settings
of the original Pass2Edit work [26], where the total number of operations |t| is
1,561. Therefore, for Pass2Edit, the process of generating guesses is a multi-step
1,561-class classification problem.

v0 v0 v1 v1 v2 v2 v3 v3 v4 v4 v5 v5 v0 v0 v1 v1 v2 v2 v3 v3 v4 v4 v5 v5

vv
<INS, ‘d’, 3>

Fig. 2. The architecture of Pass2Edit [26], with an example of how it works in a single-
step prediction. The model takes the original and the current passwords as inputs, and
predicts the next edit operation, applying it to the current password. The updated
current password then serves as input for the next step in a multi-step generation.

As shown in Fig. 2, Pass2Edit [26] uses gated recurrent units (GRU) [10] as
the backbone of its architecture. For predictions within a single step, characters
in the original and current passwords are input to an embedding layer, then

264 Y. Zhang et al.

concatenated according to their positions. These embeddings are later passed
to a 3-layer GRU (256 dimensions for each layer), and the output for the last
character goes through two fully-connected layers, obtaining probabilities for
every possible edit operation using a softmax layer. In order to generate the
password with the highest probability, the model applies the most probable
operation to the current password at every step, and uses this new password
as input for the next step. This process terminates when an EOS is predicted,
indicating that the transformation should come to an end.

The process above can only attain one single result. To generate more guesses,
beam-search is applied to extract more outputs of the model. While enumerating
guesses is also crucial, we do not elaborate on this process as we use Pass2Edit for
password strength evaluation, only the training process of Pass2Edit is necessary
for our model building.

alice123

123456

password

abc123

letmein

…

abc123
alice123

<abc123, abc123>

<abc123, a c123>

<abc123, alc123>

<ab c123, alic123>

<ab c123, alice123>

<DEL, 1>

<INS, ‘l’, 1>

<INS, ‘i’, 2>

<INS, ‘e’, 3>

<EOS>

Pass2Edit Framework

Popular password
dic onary

Mul -step transforma on

Mul -step edit opera ons

Password to evaluate:

p(<DEL,1>)
=0.12

p(<INS,’l’,1>)
=0.02

p(<EOS>)
=0.26

p(<INS,’i’,2>)
=0.17

p(<INS,’e’,3>)
=0.03

output=p(<DEL,1>)*p(<INS,’l’,1>)*p(<INS,’i’,2>)*p(<INS,’e’,3>)*p(<EOS>)=3.18 × 10−6

Pre-processingsimilarity matching Distribu on extrac on

Probability
calcula on<DEL, 1>: Edit opera on

<abc123, alc123>: Password pair

: Probability distribu on
of opera ons

Password pair
(matched using

cosine similarity)

Trained Pass2Edit model
(GRU-based deep learning

model)

Fig. 3. Simplified workflow of EditPSM during a password strength evaluation on-
demand. For a given password, EditPSM finds the most similar popular password,
forming a password pair which serves as input to the Pass2Edit framework. EditPSM
further extracts the probability for edit operations from the multi-step prediction of
Pass2Edit, obtaining the final probability (i.e. guessability) of the given password.

3.3 Modeling Password Strength Using EditPSM

The usage of EditPSM for password strength evaluation consists of three phases:
matching, training, and strength estimation. The matching phase utilizes a train-
ing dictionary and a popular password dictionary, then generates an intermediate
dataset containing password pairs. As is described in Sect. 3.1, while these two
dictionaries can be derived from one single training set, the popular password
dictionary can be a predefined password list, or selected from a different dataset.

EditPSM: A New PSM Based on Password Reuse via DL 265

In this work, for a fair comparison with other PSMs, we only use one single train-
ing set. Particularly, we use 2-gram cosine similarity score for our matching phase
as recommended by Wang et al. [26]:

sim (pwA, pwB) =

∑
g∈G

(count (pwA, g) ∗ count (pwB , g))
√∑

g∈G
count2 (pwA, g)

√∑
g∈G

count2 (pwB , g)
, (3)

where G is the set of all 2-gram substrings in pwA and pwB , and count(pw, g)
represents the count of substring g in pw.

During the training phase of EditPSM, the intermediate dataset serves as
input to Pass2Edit, and the model captures how users modify popular passwords
and use segments of them to create new passwords. After matching and model
training, we now have a model that can assign probabilities to any given password
pair. Given a password pair 〈pw1, pw2〉, with its edit operation sequence being
t = t1, t2, . . . , EOS, we can calculate the probability of this password pair as:

Pr(〈pw1, pw2〉) = Pr(t1|pw1, pw1) × Pr(t2|pw1, pwcurr
i)×

. . . × Pr(EOS|pw1, pwcurr
n),

(4)

where pwcurr
i is the product of applying ti to pwcurr

i−1 . When pw1 is a popular
password, it’s obvious that the higher this probability, the lower the security of
pw2, since this probability essentially represents how likely pw2 is created reusing
the popular password pw1.

As shown in Fig. 3, in strength estimation phase where EditPSM evaluates
a password on demand, it first finds the closest match of the password in the
popular password dictionary. This matching process again results in a password
pair that serves as input. The model then calculates the multi-step edit opera-
tions it requires for the popular password to be transformed into the password to
evaluate. As the model outputs a probability distribution for every step in the
transformation, EditPSM extracts the corresponding probability for each edit
operation. After multiplying these probabilities step-by-step, the model gains
the probability of the password pair, indicating the strength of the password
to be evaluated. In a word, our EditPSM is a probabilistic password strength
evaluation model that assigns probability to a password, where the probability
reflects the likelihood of the password being created reusing popular passwords.

In addition, other than how users modify popular passwords, the intermediate
dataset also comprises characteristics entailed by password distributions, as it
is derived from the given dataset. When trained on such intermediate dataset,
the probability output by EditPSM also implies a given password’s probability
within the password distribution observed in the given dataset. This enables
EditPSM to estimate the strength of passwords that are not created by reusing
popular passwords. The details are provided in Appendix A.

266 Y. Zhang et al.

4 Experimental Setups and Results

4.1 Dataset Overview and Ethical Considerations

We utilize 10 large-scale password dataset in the real world for our experi-
ments, in order to thoroughly evaluate the accuracy of EditPSM and its coun-
terparts. Our datasets cover different types of services and languages. Though
these datasets seem to be a little old, as revealed by Bonneau [7] and Liu-Blocki
[6], passwords change marginally over time. Therefore, these datasets are still
representative. The details are shown in the following Table 2.

Table 2. Datasets used in experiments and evaluation.

Dataset Service type Language Leaked time Total PWs Unique PWs
Tianya Social forum Chinese Oct. 2011 30, 901, 241 12, 898, 437
Sina Portal Chinese Dec. 2011 19, 383, 163 3, 748, 140
Dodonew Ecommerce Chinese Dec. 2011 16, 258, 891 10, 135, 260
Zhenai Online dating Chinese Oct. 2011 5, 260, 229 3, 521, 764
Weibo Social forum Chinese Dec. 2011 4, 730, 662 2, 828, 618
Linkedin Job hunting English Jun. 2012 54, 656, 615 34, 334, 121
Rockyou Social forum English Dec. 2009 32, 575, 500 14, 330, 075
Yahoo Portal English Jul. 2012 5, 626, 485 3, 439, 492
Gmail Email English Sept. 2014 4, 929, 086 3, 119, 299
Phpbb Tech forum English Jan. 2009 255, 421 184, 389

Ethical Considerations . While these datasets are leaked passwords and are
publicly available, we still treat them with caution. In order to prevent further
harm, we only present aggregated statistical information, avoiding potential leak-
age of personal information concerning emails, usernames, etc. As these data are
available on the internet, the results in this work are reproducible.

4.2 Password Reuse Based on Popular Passwords

We design our EditPSM based on the intuition that users can modify popular
passwords or use parts of them to create new passwords. To explore if users
actually reuse popular passwords, for each dataset, we draw top 1,000 pass-
words as the popular password dictionary, and randomly select 104 passwords
from the same dataset to save time. For each randomly selected password, we
find a corresponding popular password with the highest similarity score (2-gram
cosine similarity), and record the score which indicates the highest possible sim-
ilarity between a password and the popular passwords. We then calculate the
distribution of those similarity scores.

EditPSM: A New PSM Based on Password Reuse via DL 267

Fig. 4. Distribution of similarity score of sampled passwords in each dataset. The higher
the similarity score, the more similar a password is with popular passwords observed
in the corresponding dataset. It can be observed that Chinese datasets have a higher
proportion of passwords that are highly similar to popular passwords.

As shown in the cumulative distribution in Fig. 4(a), a large proportion of
passwords are highly similar to popular passwords, with the similarity rep-
resented by cosine similarity scores. Non-cumulative distribution in Fig. 4(b)
reveals that curves of most datasets have over one peak. Peaks in areas of high
similarity indicate that a large proportion of passwords are highly similar to pop-
ular passwords. We believe the reason behind this relatively uneven distribution
is the users’ reuse behaviors of popular passwords. Additionally, we observe that
passwords in Chinese datasets tend to be more similar to popular passwords,
compared with those in English datasets. This indicates Chinese users reuse
passwords more often, which is consistent with Wang et al.’s conclusions [25].

4.3 Experimental Setup

For password strength evaluation in online guessing scenarios we emphasize in
this work, we choose 104 for the online guessing threshold as a rule of thumb. This
threshold is also recommended by Wang et al. [24] in a systematic evaluation
of PSMs. Generally speaking, there are two kinds of attackers that PSMs would
have to defend against in online guessing scenarios [24].

Knowledgeable Attackers. As billions of passwords from different sites have
been leaked and are publicly available [5, 31], we should be aware that some
attackers can obtain leaked passwords from a specific service and learn its pass-
word distribution, hence targeting this service for a more effective attack. We
refer to such strategy as the knowledgeable strategy, where the password distri-
bution in the target dataset is known by a knowledgeable attacker. This strategy
is powerful and yet realistic, as many sites have leaked their passwords more than
once. We simulate how PSMs perform confronting such strategy by evaluating
their accuracy for top 104 passwords in the targeted service, as they are the most
vulnerable ones under knowledgeable attacks.

268 Y. Zhang et al.

General Attackers. Attacker who failed to obtain the password distribution
of the target service are referred to as general attackers. For general attackers,
their ideal strategy would be to approximate the actual password distribution
by utilizing common passwords (instead of the most popular ones) in the tar-
get dataset. As such passwords are often unavailable for general attackers, this
ideal strategy should demonstrate their upper bound performance. We simulate
this general strategy by randomly selecting 104 passwords from the test set,
and observe the accuracy of PSMs on the strength evaluation of these sampled
passwords.

Table 3. Training and testing scenarios for every PSM

Scenario # Language Training set A Training set #B∗ Test set
1 Chinese Tianya Zhenai Weibo
2 Weibo Sina
3 Weibo Dodonew
4 English Rockyou Phpbb Linkedin
5 Gmail Yahoo
6 Yahoo Gmail

∗set #B is only used by fuzzyPSM [23], as it requires two training
sets to characterize users’ password reuse behavior.

We use the 10 large real-world datasets in Table 2 in our experiments, and set
up six password strength evaluation scenarios for online guessing, three trained
and tested on Chinese datasets, the other three trained and tested on English
datasets. We conduct both the knowledgeable and general strategies for each
scenario, and compare eight mainstream PSMs (see Sect. 2.2) with our EditPSM.
As five PSMs require training data, the training set we use shall be as large as
possible, ensuring the effectiveness of each PSM for a fair comparison. In this
light, we follow the settings of Wang et al. [24] in a large-scale evaluation of
PSMs, where they use Tianya and Rockyou datasets as training set A for PSMs
requiring only one single training set. Since fuzzyPSM requires two training sets,
an additional set #B is used. See Table 3 for more details.

4.4 Evaluation Results

For measuring the accuracy of PSMs in online guessing scenarios, we choose the
Weighted Spearman metric (W Spearman in short) advocated by Wang et al.
[24], as the research demonstrated the soundness of such metric. The calculation
of W Spearman can be described as:

W Spearman =
∑n

i=1 [wi (xi − x̄) (yi − ȳ)]
√∑n

i=1

[
wi (xi − x̄)2

] ∑n
i=1

[
wi (yi − ȳ)2

] , (5)

EditPSM: A New PSM Based on Password Reuse via DL 269

where xi and yi are the i-th elements of X and Y , the weighted rank vectors
for outputs of ideal PSM and the tested PSM respectively, with wi being the
corresponding weight that equals to the i-th password’s frequency. Note that
x and y are weighted means of X and Y . W Spearman ranges from −1 to 1,
with higher values indicating greater similarity between the outputs of the ideal
PSM and the tested PSM, suggesting that the tested PSM is more accurate. As
W Spearman is a single value for a given rank of passwords, we further utilize a
W Spearman curve to show how PSMs perform as the rank of passwords changes.
See Appendix B for more details on W Spearman curves.

Performances of PSMs may vary greatly when evaluating different passwords,
as no single metric or PSM can be the most effective for all passwords [12],
especially when different datasets are considered. Additionally, as more insecure
passwords can cause greater harm, more importance should be attached to pass-
words of lower ranks (i.e. more frequent and less secure). In this light, while
we use W Spearman curves (Figs. 5, 7) to observe the general performances of
PSMs, we record discrete W Spearman values at several benchmark password
ranks, and calculate the increment for EditPSM over other PSMs as relative
WSpearman (denoted as RW Spearman):

RW Spearman = W SpearmanEditP SM − W SpearmanotherP SM (6)

As shown in the heatmaps describing RW Spearmanrelative (Figs. 6, 8), we
believe RW Spearmanrelative at different benchmarks (Rank = 10, 102 , 103 , and
104) help the interpretation of results. Note that though at low ranks, PSMs with
lower score may still classify these passwords as weak. However, since attackers
attempts to crack as many accounts as possible within a limited guess budget, the
effectiveness of PSMs is not measured as a classification problem, but a ranking
problem, as is described by in the settings of an ideal PSM and online password
evaluation scenarios (see Sects. 2.1 and 4.3 for details). By using these values,
we can also calculate the improvement EditPSM achieves by using quantified
results.

In addition, results for general strategy demonstrate the robustness of PSMs
as the tested passwords are randomly selected. Related experiments are based
on random samples and are not cherry-picked. Note that the exact results may
shift when passwords are chosen differently.

Generally speaking, EditPSM is the best performing PSMs compared with
its counterparts previously proposed by both academia and industry. Note that
we do not claim EditPSM outperforms all counterparts in all cases, instead we
claim EditPSM is among the few best-performing PSMs, and achieves similar or
superior performance in general.

When we compare EditPSM with industry-designed PSMs, our EditPSM
greatly outperforms 12306 PSM [3] and Microsoft PSM [1]. Specifically, as shown
in Figs. 6, 8, EditPSM achieves an average increment of 0.222 and 0.6833 in
W Spearman for all benchmarks under both scenarios. This is within our expec-
tation, as PSMs proposed by industry often fall short on accuracy compared

270 Y. Zhang et al.

Fig. 5. Results for knowledgeable strategy. We mainly focus on these results, as test
sets under knowledgeable strategy are based on true distributions of the ground truth.
In these experiments, EditPSM is among the best-performing PSMs in all scenarios,
demonstrating the potential of introducing credential tweaking models into password
strength evaluation.

Fig. 6. Heatmap for results at different benchmark password ranks under knowledge-
able strategy. Values within the heatmap indicate the increment (decrement if negative,
rarely) in WSpearman value for EditPSM over the corresponding PSM. We can see that
generally speaking, EditPSM is among the best performing PSMs, achieving significant
increment for most PSMs.

with their academia counterparts. As shown in Fig. 6, our EditPSM has similar
performance (with an average increment of 0.01166 in all benchmarks for knowl-
edgeable strategy) with zxcvbn [29], the most promising PSM in the industry,
and achieves an improvement of 0.045 on average for highly insecure passwords
(i.e. at lower ranks of 10 and 102, see Fig. 8).

For statistics- or similarity-based PSMs, it can be seen that EditPSM per-
forms significantly better than LPSE [14], having an average increment of 0.175
on W Spearman for every experiment at all 4 benchmarks. As for PCFG-PSM
[15], EditPSM achieves an improvement of 0.047 for knowledgeable strategy at
all benchmarks in Figs. 5 and 6, and performs slightly better with an average
increase of 0.0029 in general strategy. Specifically, as shown in Fig. 6, when tested

EditPSM: A New PSM Based on Password Reuse via DL 271

Fig. 7. Results for general strategy. When tested passwords are randomly chosen for
Chinese datasets, WSpearman value of EditPSM is usually above 0.5, while that of most
other PSMs vary greatly (especially for passwords of lower ranks) as the password rank
changes. This implies that EditPSM is the most stable PSM for experiments involving
Chinese datasets, demonstrating its robustness.

Fig. 8. Heatmap for results at different benchmark password ranks under general
strategy. Values within the heatmap indicate the increment (decrement if negative)
in WSpearman value for EditPSM over the corresponding PSM. As results for lower
password ranks represents PSMs’ accuracy when assessing more insecure passwords, we
can see that EditPSM could more accurately capture the strength for highly insecure
passwords, even when these tested passwords are randomly chosen.

passwords are randomly chosen (i.e. general strategy), the average WSpearman
of EditPSM at rank = 10 is 0.137 higher than PCFG-PSM, implying that deep-
learning technique employed by EditPSM addresses the over-fitting issue faced
by statistical models, such as PCFG-PSM.

As our EditPSM is based on deep-learning, we emphasize on the comparison
of EditPSM and two foremost deep-learning-based counterparts (i.e. CNN-PSM
[19] and RNN-PSM [17]). As shown in Figs. 5, 6, among deep-learning-based
PSMs, EditPSM performs the best. When compared with CNN-PSM using
W Spearman metric, EditPSM greatly outperforms CNN-PSM [19] in almost all
cases under the two strategies, with an average increment of 0.18 in all experi-

272 Y. Zhang et al.

ments at the 4 benchmarks. EditPSM achieves higher accuracy than RNN-PSM
[17] under knowledgeable strategy, having the increase of 0.032 in W Spearman.
This indicates that our work takes one further step towards introducing deep
learning approaches into password strength evaluation.

FuzzyPSM is the most prominent PSM for password strength evaluation
in online guessing scenarios according to Wang et al. [24]. As fuzzyPSM also
aims to capture users’ password reuse behavior, we focus on the details of how
EditPSM performs compared to fuzzyPSM. As shown in Figs. 5 and 6, our pro-
posed EditPSM achieves a slightly higher accuracy than fuzzyPSM [23] under
knowledgeable strategy, with an average improvement of 0.0254 in W Spearman
at all benchmarks. We believe this improvement is the contribution of our new
technical route: EditPSM learns more fine-grained password-level reuse behav-
iors, while fuzzyPSM essentially extracts dataset-level reuse behaviors, treating
all passwords in the dataset as a whole. In general strategy, EditPSM is 0.089
higher than fuzzyPSM on average, for password ranks of 10 and 102 (i.e. most
insecure passwords, see Fig. 8). Since EditPSM uses deep learning framework, it
outperforms fuzzyPSM which uses statistical method in avoiding over-fitting.

The experimental results above answer the second research question (RQ2),
as EditPSM reveals its effectiveness and comparably good performance, even
compared with the foremost counterparts in both the industry and academia.

4.5 Model Size and Speed

As deep learning frameworks are often large and computationally intensive, the
size and feedback speed of PSMs based on deep learning could impact their
usability. We recorded the average time it took for deep-learning-based PSMs
to evaluate password strength and their model size. These results are recorded
from scenario #2, where the training set is Tianya and the test set is Sina.

Table 4. Size and speed of deep-learning-based PSM.

PSM Evaluation time per PW Model size
EditPSM 2.71 ms 8.63 M
CNN-PSM [19] 4.74 ms 88.4 M
RNN-PSM [17] 1.72 ms 8.77 M

As shown in Table 4, we can see that among the three deep-learning-based
PSMs, EditPSM is the smallest in size and achieves satisfactory speed. Since
we conducted our experiments on a single NVIDIA GeForce RTX 3090 GPU,
we believe EditPSM is fast enough for most service providers. Additionally, like
RNN-PSM, EditPSM can also be compressed and deployed on the client side
using optimizations and compressing techniques of Melicher et al. [17].

EditPSM: A New PSM Based on Password Reuse via DL 273

5 Conclusion

In this paper, we propose an effective deep-learning-based password strength
meter utilizing credential tweaking models, namely EditPSM. By introducing
a brand-new technical route that focuses on users’ password reuse behaviors,
EditPSM is the first password strength evaluation model that employs targeted
password guessing frameworks based on password reuse, without requiring users’
sister passwords (i.e., passwords leaked at other sites). We also look into how
users create passwords by modifying popular passwords or using its segments,
hence expanding the border of users’ password reuse behavior.

Through extensive experiments with 10 large real-world datasets and com-
parisons with 8 mainstream password strength meters, we have demonstrated
the effectiveness of EditPSM. For the first time, we find that credential tweak-
ing models, the most effective type of targeted password guessing models, can be
well applied to practical password strength evaluation scenarios, even when sis-
ter passwords are unavailable. We believe our work takes one firm step towards
introducing targeted password guessing models into password strength evalua-
tion, and contributes to better understanding users’ password reuse behavior.

Acknowledgments. The authors are grateful to the anonymous reviewers for their
invaluable comments. Zhenduo Hou is the corresponding author. This research was
supported in part by the National Natural Science Foundation of China under Grant
62222208, and National College Students’ Innovation and Entrepreneurship Training
Program, China.

Appendix A Setups for EditPSM and some other PSMs

EditPSM. For model training and parameter tuning, we follow the setups in the
original paper for Pass2Edit [26]. However, in order to accelerate training speed,
we use a cut-off frequency threshold for training passwords. Specifically, when we
match passwords in the training set with popular passwords, we select passwords
above a certain frequency threshold. In this work, we use f = 100 for both Tianya
and Rockyou datasets when used as training sets, and use top 1,000 passwords
as popular passwords respectively. Though this cut-off process losses information
in the training set, potentially hindering the effectiveness of EditPSM, EditPSM
can be trained within minutes on Tianya or Rockyou dataset. This is useful in
practice, as though we did not demonstrate the scalability of EditPSM when
predefined popular password dictionary are applied, the ability to quickly adjust
to new situations is important in practice. Furthermore, this indicates that the
evaluation results only demonstrate the lower-bound performance of EditPSM.

Additionally, the training set contains duplicate passwords. For a password
that has appeared m times in the training set, its corresponding password pairs
appear m×k times, with k being the total matches found in the popular password
dictionary. Using this setting, EditPSM can learn not only the users’ behaviors
of reusing popular passwords, but also the distribution of in the given dataset.

274 Y. Zhang et al.

RNN-PSM. As there are numerous parameter settings that came along the
source code 1 of RNN-PSM [17], for the reproducibility of results, we explicate our
parameter choices in our experiments. We follow the Melicher et al.’s settings [17]
for the client-side model. That is, 3 LSTM layers with a hidden size of 256, and 2
fully-connected layers with 128 dimensions. As this setting has achieved similar
or superior performance described in [24], it can guarantee fair comparison.

Microsoft PSM. Currently, Microsoft deploys a PSM in Edge browser, which
shows password strength upon registration for other services for users of Edge.
Though this update makes the performance of Microsoft PSM more crucial as it
affects more users, we are unable to obtain the underlying mechanism for their
new PSM at the time. We use the older version of Microsoft PSM in this work,
as is also employed by and described in [1, 24].

Treating Anomalous PSM Outputs. Some PSMs do not output valid results
for all input passwords. For example, zxcvbn do not output a valid result for
passwords that contained only a space. We replace these results with zeros, and
compute W Spearman accordingly. This helps in making a fairer comparison, as
invalid outputs should be considered as a defect of such PSMs, and the zeros we
assigned would most likely result in a decrease in their W Spearman.

Appendix B The Calculation of WSpearman Curves

WSpearman [13, 24] represents the similarity between two weighted rank vectors.
To obtain WSpearman curve as the password ranks increases, we first calculate
the whole rank vectors consisting 104 elements. Later, for any given rank r, the
corresponding WSpearman value can be calculated as:

W Spearmanr = W Spearman(X[: r], Y [: r]), (7)

where X[: r] and Y [: r] represents the first r elements of weighted rank vectors
X and Y respectively. W Spearman proposed in [24] did not specify on how to
calculate W Spearman when the rank is 1, or when all elements in a vector has
the same value. As these two cases result in divisions by 0, for the first case we
define W Spearman = 1, as it only affects the first value in the curve. For the
second case, we adjust the calculation for rank values within the same rank. For
n tied elements with the same rank [a0

j , a
1
j , ..., an

j], the rank value of ai
j is:

rankj = aj +
∑i

k=0 wk

i
× i + 1

2
, (8)

where wk is the weight of elements at location k within the tied elements. This
adjustment only affect PSMs that output identical values for a large number
of passwords, such as 12306 PSM and Microsoft PSM, as they only output 3
1 see at https://github.com/cupslab/neural_network_cracking..

https://github.com/cupslab/neural_network_cracking.
https://github.com/cupslab/neural_network_cracking.
https://github.com/cupslab/neural_network_cracking.
https://github.com/cupslab/neural_network_cracking.
https://github.com/cupslab/neural_network_cracking.

EditPSM: A New PSM Based on Password Reuse via DL 275

or 4 different values for all passwords within the test set. The results of other
PSMs remain unchanged after this adjustment. Hence, we believe our slight
modification does not affect the soundness of the weighted spearman metric.

References

1. Microsoft password checker. https://devilsworkshop.org/microsoft-password-
checker/ (Feb 2012)

2. The 2021 psychology of passwords report. https://www.lastpass.com/resources/
ebook/psychology-of-passwords-2021 (2021)

3. 12306 registration page. https://kyfw.12306.cn/otn/regist/init (Aug 2024)
4. Edge password health indicator. https://support.microsoft.com/en-us/topic/

password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3 (Aug 2024)
5. Recently added breaches. https://haveibeenpwned.com/ (Aug 2024)
6. Blocki, J., Liu, P.: Towards a rigorous statistical analysis of empirical password

datasets. In: Proceedings of the IEEE S&P 2023, pp. 607–625
7. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million

passwords. In: Proceedings of the IEEE S&P, pp. 538–552 (2012)
8. Bonneau, J., Herley, C., van Oorschot, P., Stajano, F.: Passwords and the evolution

of imperfect authentication. Commun. ACM 58(7), 78–87 (2015)
9. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from

markov models. In: Proceedings of the NDSS (2012)
10. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for

statistical machine translation. In: Proceedings of the EMNLP 2014, pp. 25–29
(2014)

11. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: Proceedings of the NDSS, pp. 23–26 (2014)

12. Galbally, J., Coisel, I., Sanchez, I.: A new multimodal approach for password
strength estimation - part I: theory and algorithms. IEEE Trans. Inf. Foren. Secur.
12(12), 2829–2844 (2017)

13. Golla, M., Dürmuth, M.: On the accuracy of password strength meters. In: Pro-
ceedings of the ACM CCS 2018, pp. 1567–1582 (2018)

14. Guo, Y., Zhang, Z.: LPSE: Lightweight password-strength estimation for password
meters. Comput. Secur. 73, 507–518 (2018)

15. Houshmand, S., Aggarwal, S.: Building better passwords using probabilistic tech-
niques. In: Proceedings of the ACSAC 2012, pp. 109–118 (2012)

16. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
Proceedings of the IEEE S&P 2024, pp. 689–704 (2024)

17. Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using
neural networks. In: Proceedings of the USENIX SEC 2016, pp. 175–191 (2016)

18. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing:
password similarity models using neural networks. In: Proceedings of the IEEE
S&P, pp. 417–434 (2019)

19. Pasquini, D., Ateniese, G., Bernaschi, M.: Interpretable probabilistic password
strength meters via deep learning. In: Proceedings of the ESORICS 2020, pp.
502–522 (2020)

20. Ur, B., Kelley, P.G., Komanduri, S., et al.: How does your password measure up?
The effect of strength meters on password creation. In: Proceedings of the USENIX
SEC 2012, pp. 65–80 (2012)

https://devilsworkshop.org/microsoft-password-checker/
https://devilsworkshop.org/microsoft-password-checker/
https://devilsworkshop.org/microsoft-password-checker/
https://devilsworkshop.org/microsoft-password-checker/
https://devilsworkshop.org/microsoft-password-checker/
https://devilsworkshop.org/microsoft-password-checker/
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
https://kyfw.12306.cn/otn/regist/init
https://kyfw.12306.cn/otn/regist/init
https://kyfw.12306.cn/otn/regist/init
https://kyfw.12306.cn/otn/regist/init
https://kyfw.12306.cn/otn/regist/init
https://kyfw.12306.cn/otn/regist/init
https://kyfw.12306.cn/otn/regist/init
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://support.microsoft.com/en-us/topic/password-health-indicator-5df7b4bc-cdb2-430a-9951-034accc57ff3
https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://haveibeenpwned.com/

276 Y. Zhang et al.

21. Van Acker, S., Hausknecht, D., Joosen, W., Sabelfeld, A.: Password meters and
generators on the web: from large-scale empirical study to getting it right. In:
Proceedings of the ACM CODASPY 2015, pp. 253–262 (2015)

22. Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE
Trans. Inf. Foren. Secur. 12(11), 2776–2791 (2017)

23. Wang, D., He, D., Cheng, H., Wang, P.: fuzzyPSM: a new password strength meter
using fuzzy probabilistic context-free grammars. In: Proceedings of the IEEE/IFIP
DSN 2016, pp. 595–606 (2016)

24. m Wang, D., Shan, X., Dong, Q., Shen, Y., Jia, C.: No single silver bullet: measuring
the accuracy of password strength meters. In: Proceedings of the USENIX SEC
2023, pp. 947–964 (2023)

25. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: Proceedings of the ACM CCS 2016, pp.
1242–1254 (2016)

26. Wang, D., Zou, Y., Xiao, Y.A., Ma, S., Chen, X.: Pass2edit: a multi-step generative
model for guessing edited passwords. In: Proceedings of the USENIX SEC 2023,
pp. 983–1000 (2023)

27. Wang, D., Zou, Y., Zhang, Z., Xiu, K.: Password guessing using random forest. In:
Proceedings of the USENIX SEC 2023, pp. 965–982 (2023)

28. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: Proceedings of the IEEE S&P 2009, pp.
391–405 (2009)

29. Wheeler, D.L.: zxcvbn: low-budget password strength estimation. In: Proceedings
of the USENIX SEC 2016, pp. 157–173 (2016)

30. Xiu, K., Wang, D.: Pointerguess: targeted password guessing model using pointer
mechanism. In: Proceedings of the USENIX SEC 2024, pp. 5555–5572 (2024)

31. Zangre, A.: Comb data breach: what it means, and how to protect yourself. https://
blog.1password.com/what-comb-means-for-you-and-your-business/ (Feb 2021)

https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/
https://blog.1password.com/what-comb-means-for-you-and-your-business/

