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«Q illumination smoothness loss DARK FACE Face detection
. R SSIM loss perceptual loss LOL PSNR SSIM o
DRBN [43] SSL recursive network adversarial loss images selected by MOS LoL SSIM-GC RGB PyTorch
Huber los User Study PSNR
SSIM loss simulated by a LOL SICE SSIM VI
Lv et al. [25] SL U-Net like network 3 LOE NIQE RGB | TensorFlow v
perceptual loss retouching module DeepUPE 4P Runtime
illumination smoothness loss q
Face detection
mutual smoothness loss
reconstruction loss
four subnetworks illumination smoothness loss simulated by
Fan ot al. [24] SL U-Net like network cx:oss ent:ro.pyl lovsvs 1llv|11.m}ma't,1|on zﬁltmstr?\en(,, illznullatedi PSI;FI{ SI?IM RGB ~ v
fonture modulntion consistency loss slight color distortion, self-selected QE
SSIM loss and noise simulation
gradient loss
ratio learning loss
frequency decomposition L loss . SID in RGB o Q
Xuetal. [57] S U-Net like network perceptual loss SID) i 1R(CIE) self-selected IPRINIR S HCD Bt
- . U-Net like network Ly loss . . § TensorFlow
EEMEFN [26] |  SL edge detection network | weighted cross-entropy loss SID SID PSNR SSIM W | b ddlePaddle
ezitéimall lopwiing SSIM loss illumirsnlara‘;ljftsjfs};ment simulated User Study PSNR
5 5 s
BILRY 2] Bl bac;(nti?:(t:lt‘i,znfari:g;ork total variation loss slight color distortion, LOL SSIM NIQE EEE 1P/ D
ey and noise simulation
Ly loss LOL SID in RGB LOL SID in RGB PSNR SSIM
LPNet [25] SL pyramid network perceptual loss NilT‘Ad be FiveK MIT-Adobe FiveK NIQE #P RGB PyTorch
luminance loss -Adobe tve MEF NPE DICM VV  FLOPs Runtime
PSNR SSIM
SIDGAN [27] SL U-Net CycleGAN loss SIDGAN SIDGAN TPSNR TSSIM ATWE| W TensorFlow
retinex reconstruction loss NPE LIME
RRDNet [39] ZSL three subnetworks texture enhancement loss - o NIQE CPCQI RGB PyTorch v
. . . MEF DICM
noise estimation loss
v SSIM loss SCIE SCIE LOL PSNR SSIM
TBEFN [30] SL U-Net like nstwork perceptual loss LOL DICM MEF NIQE Runtime RGB | TensorFlow v
smoothness loss NPE VV #P FLOPs
IR I Lo loss ' o PSNR SSIM
DSLR [31] SL L”‘f\’]l:;i;’l; I[’]’é’m”k';;‘li Laplacian loss MIT-Adobe FiveK MI’:el/f\(:(e)ll;(c ti:i"d( NIQMC NIQE RGB PyTorch
color loss BTMQI CaHDC
cooperative loss
A LOL LOL PSNR SSIM
- q -~ -
8 RUAS [42] ZSL neural architecture search bllmllfll‘ !ossl MIT-Adobe FiveK MIT-Adobe FiveK Runtime #P FLOPs RGB PyTorch v
< total variation loss e ST TSNE
N B L . ser Study PS
. Ly loss simulated by illumination simulated ser ! |
Zhang et al. [32] SL U-Net consistency loss adjustmentand noise simulation self-selected SSIM AB N RGB PyTorch
MABD WE
spatial consistency loss SICE NPE User Study PI
. exposure control loss LIME MEF PNSR SSIM #P
Zero-DCE++ [10] ZSL U-Net like network @lor @amstiony s SICE DICM VV MAE Runtime RGB PyTorch
illumination smoothness loss DARK FACE Face detection FLOPs
. - S g perceptual loss PSNR SSIM .
DRBN [11] SSL recursive network detail loss quality loss LOL LOL SSIM-GC RGB PyTorch
L loss Ly loss .
. LOL LOL simulated PNSR SSIM
Retinex-Net [34] | SL oD GG totalsfali\éi?;sl loss simulated by adjusting histogram| NPEDICMVV  UQI OSS User Study | RCB | FyTorch 4
. DM BDw g
RetinexDIP [11] ZSL  |encoder-decoder networks v o - Fusion LIME ; RGB PyTorch v
reflectnce loss N NIQMC CPCQI
. L NASA NPE VV
illumination smoothness loss
3 . MEF LOL LOL LIME PNSR SSIM
PRIEN [33] SL recursive network SSIM loss cimmiliied oy od st e NPE MEF VV LOE TMQI RGB PyTorch
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ZJ5, AIPAE i U-Net #12¢ U-Net (4572 LLIE f 2R
A 25 4544 o X2 H A U-Net i AVA RGN & 2 RIERHIE, IF
(7] PR ) AR A R SRR o T BB OO T S B AR IR
M PR i 3 R E A . R, H AT LLIE M 2845t T GE 2
T LRI 1) LU ERRE, BT RRER
AN, ARATR IR L AR AR A BEAE R S S ) A4k h T RETH 25 XHF
W AR iR M BE T S 0 2R NSRS, 2) 284 U-Net #Y K]
2% B R T RE R AE R A SR P T AR RN Z R
R o Ay 20 AR R AT R J2 U F AR A
BAFE R, 3) RUE - LERAT AL AR R 1 LLIE,
HENMTRZEOLAE M 8is e A M KM IRE A S5 . BT
W 245 S5 HA IS 1 25 FE AR R 5 A5

3.2 FE#EE Retinex BiEHES

WE3(c) Frn, JUPA 1/3 Mk REM ity
Retinex BESHIZE &/, B0, BEITA[H A F W45 kA A
Retinex 4574 (1) B 43 R4k 35 B BH 1ROk 15 S M 28 12 2] o RS
IEFER 2 A AT DATEREBE T IR 2 ) i A B TR O v
EEAS H RS S AT RS | AR R AR 1) BT
Retinex ) LLIE J7 & sl JH R BRARR I, RSO3 2 e 240
HREE IR, PR MR AR EER: 2) )R Retinex 3
W, TREE M2 i UL A ) RS AT AR AFTE . 2490 N DR R S
2:>] 5 Retinex FEEE AR KES, WAZAF407% & AN (] HOLHE
e RHAER.

3.3 BiEEX

WE3(d) Froc, RGB $dlits e R 2 807 b 3 S,
AT 2 R B RETFHAIHL. Go-Pro AHLAIIC AMUAHHL™
AR ARG IE . BIR raw MBI SR T4 Ik A0 14 S
R T FRR M8 A0 15 8%, (EER I TS 7 50 )12 A €0 e F o
FEEIATEE . L, 7E raw F B UIZRA TR BERIAYE & R]
VAR M 20T F s X FO RS, RIS ARSI @R, Il
I 5E M, I BEAR i K IR AR 1 5 . FEARRRT T
LLIE ftFser, MORREA) raw 855 RGB %=X~ Fi
e, KA FTRESS & RGB i) (8 R PEA raw B0 &
BRI

3.4 KREH

TER3(e) 1, LLIE #E3 f F R Bk B A B R B 2R (L,
Lo, SSIM). JEHHR R A A BEAh, AR FEK
ik, R T BB BB WHUHikE. AT
(W SERILEIPNEEJea e LT IS

WA AN B AR AR Lo 0K T
TR IR, (EX /MBI — R AL . Ly BURARSF
MR TSR, RO TCIR R as i e, B R YA E
FEAHAEI . SSIM BURARIF AR B 1 25 M RIZCEE . RN riis
225 3K i SCHR [67]

OB BN [08], RRADRAFEE MBI, PR Ok
PAZRAERFAE 2 3] P 5 ground truth FH{RGSER . 402K 7]
PATR S RO IE IR B OE SO IR I S5 R I RHIE 2R
SHINY ground truth 2 [A] W RRECHTES . FRAEZAEH 2 M
ImageNet ZffafE [09] LRI VGG RZ% [70] HH2Hur .
SPHTEER . O I R 9 45 2R R RS B AR AR SRR R 1Y
KA, MRS (TV loss) SRARIEHRHEE R
(AR A
XBUK. S T SR A RS S R D, R
s R T K-d /N R (7], [72].
BEEBL. (A RIS H R L —, B R R
FERCRS S % IR B CRT 225 R T G 5R 4 R ALK T

£ LLIE [3 46 5 J B0 5 25 o6 Rt il AR T MR
¥ 45 R S B A PR (73] BRA MR [T]. R KA
[75], [76], [77) FIEMR AR (78], SiX L83 A4 2% R EOR
[d], %015 LLIE S ABERiR R & T AR H IR BT
FESFE BRI HAT A HRZ AR ST B IR R
THIR R IR R — IR AERFSEEA TR o

3.5 iJIgkE

FI3(E) #5517 & A ECAT I 2R 50 S 70 I 257 55 6 45 5 19 26 5 T
(A AR OO0 o 3ok SE ATt AR A0 5 B T SRR BB i 4R A & 7
Biade. FAFEFR2HIE TEA.

Gamma FZIEBHL. T HAL MR E M, Gamma KIER
FH AR R l # E R R e B S B = . B2
— ARk UE U -

Vour = Avizv (3)

HAR A Vin R H Voue THAE [0,1] TERA . F4L A 7210
RO BOE R 1o TR o il s . EOBYE, 24
v <L, BABASE, W2y >1 0, WMAGREE. fAT
PAR BB =A RGB sl 5 5e A X iliE, W CIELab
R ASN L liE M YChCr R 2s[Ei Y . 76
Gamma FZIEIETHESE A XBE 5, @R 2 8 A Y EE
FERRELL OIS, DAlEG ™ A O 5 AN R 25 -

N T B B B St R IR, RS
TERANGE S L SE R P BN IS Gamma FIE SRR .
I Gamma A 1E A7 R EHE BE MR T AR A -

Low = n(g9(Iin; 7)), (4)

Hpon RFEMFBERA, g(ln;y) £F Gamma HH v )
Gamma ¢ 1FERE, Lin 2 EHJCLM &R R EGS 7%
B XRIEE . XA R A Gamma {H v k=4
[ BEEAACP IR S, PR, eHEsrEs
AT BE PR 5 | A S RN (0 (i 25«

BEPLYE R, R4 Retinex BLAY, 5 AT DA/ R 43
AV R, BEEGNESERRTCL, HtRa s
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*2 *3
B IGBIRERNHEE. "Syn " RREMER. M BIRERE.
Name Number | Format | Real/Syn | Video Name Number | Format | Application | Video
Gamma Correction +oo RGB Syn LIME [5] 10 RGB
Random Illumination ~+00 RGB Syn NPE [3] 84 RGB
LOL 500 RGB Real MEF [32] 17 RGB
SCIE 4,413 RGB Real DICM [83] 64 RGB
VE-LOL-L 2,500 RGB Real+Syn Vv? 24 RGB
MIT-Adobe FiveK 5,000 raw Real BBD-100K 10,000 RGB v v
SID 5,094 raw Real ExDARK 7,363 RGB v
DRV 202 raw Real v DARK FACE 6,000 RGB v
SMOID 179 raw Real v VE-LOL-H 10,940 RGB v

Hh i) S DA H A AR [R] A SR R, D RT DASE A DA 7 ARG
M2 P
Ilow = IinL, (5)

Ho L2 [0,1] JEFE N —ABED LR BE(E . M a] AR AN 2]
B EG . KRR R BT DB O R, (HER R Bk
RETE Jay i DX ok EL A R ) 2 2 ) AR A e b AT & i3 1. Fh
T2 T ETRXEE, EXFEG e BN 2R R R A]
RE2 SEAOALI HERE .

LOL. LOL [11] &5 — AN B st ks / & e kg
(R R AR S . AR 5 2 4 e AR B SR 1) A1 ISO 3k
Wiedk ). LOL A28 500 XfK/NA 400x600 HKIG/ YRR
PA RGB #3077

SCIE. SCIE J&—/™H It Eb B AT R 46F b 2 P 45 6 20 18 £
ZWECHO EMRHARSE . B 589 NMENEING RINE
EOCEGTS . BTG 3 B 18 GRS R BRI AR
R, Him b 4413 k2 HESLEEG . X 589 ik
RS G R E A 13 FhoA A e A s S i 45 51
TPk ok . AR UL, 2 2 EROLH EGERA A
FXF I ESH R . XSEEB R HEEZ 3,000x2,000 B2
6,000x4,000, SCIE ()15 2L RGB W E1E .
MIT-Adobe FiveK. MIT-Adobe FiveK [79] {4 H T4
JE TR, Ed DT LLIE. 32 H A ARG A
M2 BEFIARN FLJE . MIT-Adobe FiveK 4145 5,000 3 & B, 4
HKE R 5 A LB I TIE I, DLAEIIE 4
NFBROR, TG R XL E G raw #5200 h
TR AL RGB AE X BB M2, ATHZAEH Adobe
Lightroom X} EMGHEATHIALBE, 4 X AR E 6 HARAE N
RGB #. EIGlEgRE K1 500 BRI 5P,
SID. SID [12] 4345 5,094 B raw R 4GRS, KRG
N K EENSH R G . KESEEG IR FZ% BRI 5E
K& 424 5K, B AT UL, ARG R T A — A K B
ZH G . X EEEIGE W SRR RE oS ITHlE
+ X-T2 fEE N EM b, Bk, BRHARFER
LR (RGN FRR (L B s L AHALE) APS-C X-
Trans f£J@d% ). RIBHIDHEER 4,240%2,832, & L HEE
4 6,000%4,000. 3 # , KEHEHEZ H libraw (—4> raw &

1. https://github.com/nothinglo/Deep- Photo- Enhancer /issues/
38#issuecomment-449786636

AbFEPE) AT RGB 2SI, HREMLEST 512x512
5 B T2
VE-LOL. VE-LOL [55] A 4415 : Xty VE-LOL-L,
AT IR LLIE J5¥: e VE-LOL-H, HTif
i LLIE JyEaf ARSI s m . HAAokit, VE-LOL-L fuf
2,500 AL EG . Horr, 1,000 X2 AR, T 1,500 X2
BN . VE-LOL-H 425 10,940 5K RxT & 15, Horp
NI F I FAEF i i
DRV. DRV [18] 45 202 MNFRSH) raw U4, &S 0U5HR
AN EEEHY ground truth. & BAATER & A 2%
OB A RPZY 16 2 18 Wil AR, mE A 110
i, g2 R Je RX100 VI AHKLLE 3 N 13 4037 5 b
B, PSR TR R raw 483 - PERHN 3,672x5,496,
SMOID. SMOID [19] 438 179 2H th 2Lt R G 4R i
PSR, RN 200 it PR, SMOID £33 35,800 NFE
IRB 4 BIARARE R vaw 588 B HLAH B A 0 B R 79 RGB %
B . SMOID | R [FG BRSNS S A A T N4
AR A BN SR AR TR DA R PR 1) fEA
BB F I 2 R TR 2 R 28 A Ak B S AL A PR R A
1 A U A B S 2 TRl A 2200, AT RE ST I AN E FIE
. 2) FSUGBIRM BT Z R H A AR, W
W86 5 R A U R S N 2Rt . X W] RE S S 80K
Wrysaas 3 H 3) T3, WIS, AN E
BAHMI R ground truths A REAFLERE (L. BCRFHE MM R %=
AR R BN SRR B N 25 A T B

3.6 WidsiEsE

B T X R AR IR A [12], [14], [16], [18], [19], [55],
[79], A —LE AT AR Pl S A IRl ol 3 T TS5 B B
BAEE. MO, SRR, ANSRAT Y A RAS I (30] A0
PG HE SE PR B R I S8 [51] B ORI LLIE 37572
WAL IS HISEME . TN TAER3H B4 1 A B, I
AT LA AR e 4R

BBD-100K. BBD-100K [31] j2 i K2 BAUBERSE, H
HA 10,000 ML, HAHET 1,100 /NS SRR, 9 R —
KAVFZARIE] . RAOFAME IG5, PAK 10 MES

2. https://sites.google.com/site/vonikakis/datasets
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TERE. BBD-100K Hr g [a]471 45 19 WA 4 I SR B0 E LLIE X s
FANTET 55 1S DA S AE B3 S5 i (W g R P i
ExDARK. ExDARK [81] #8522 4 A% B2 PR b i 1 1
R AT R S 87 . ExDARK SRS T 7,363 kMR
ORI S IO R, g 12 MR, A
15 25 S 25 R JR i P L SR HE O B
DARK FACE. DARK FACE [20] $i 45 {04 6,000 5KAER
AR IR BE R, K MR ARTE T A A
MES (g) Figeiry, FATATLAFER], AT ERAE L T
T B SR IAE S . EZEPEE = 1) BT
XPERAEMT 5, A A AR SEE, 2) & AR I
SEAPTE—SEgAE, ANRUBUD (Cf Seil e HAl s 10 3K,
WERDCIEM TR, ASCRAMERE, PAK 3) —L3
JH IR R A9 A LLIE iifide. —Bokid, Hi
A S B T RE 2 BURAE AT 22 P Y EL L

3.7 PFHriEdR

B T HET ANKEAEG Y, BRI (IQA) 845,
WEESHMAESH IQA 155, #FRENE - HL P/ 15 0T &
AN, PR, TS50 % . FLOPs. a4 [l # Y
ML T LLIE S840 ERE, K3 (h) Fios. AT
TEWT .

PSNR #l MSE. PSNR 1 MSE 272 i 1) IQA $$47. &
g2 detid, #i ol (PSNR) fi% (MSE) H{HH 4.
SR, 19220 PSNR Fil MSE 1] R 242 fi— AR e f 114 ]
BRI E TR, BN B2 TH BRI X R,
MAE. MAE R4, 1E R O LI 2 7] 1R
ZM RS E . P MAE (8], AIRLRE bl o
SSIM. SSIM ¢ H K i it P EUR 2 R AR A . B —A
TR, B R E A A G5 (R BB AR . e
HA 1 HAEFEP A5 &M R B BT A ik s, R4S
F5E A AL

LOE. LOE {3z Mg si K% B SR BE R 52 BRI 7R 22 . X T
LOE ki), LOE {H#vIN, 52RENT R FER SRS .

BEHL. B THR A TR, AR H L = h m e
4555 . B, LLIE 1% a2 U050 I 1) 5 1 30 3 g
5%, PABHIEAR R ¥R RE . B BiE LLIE S i g4 =X
T BAE LA 5 T PABGEE:

1) A% PSNR. MSE. MAE FI SSIM J&Z HLifii A7 1
F6b%, (BRI A REAHE 2 AR L Rz . 2)
AR IR WA ARG BT . BT F R PP
B A5 BT FLEE AR ELRE Y o (o X S A m] DA S e H P 43
D, e SR R R A B H A A, 3) BT
LOE f8t54h, st = % 1 TAOCEG T ER. oh, @
B VARG BESsR ) Fahr, I H 4) ATHEAE — 1 hg
5 1A N AR LS B B 5 o

x4
LLIV-Phone #3E&HE. LLIV-Phone HE&EESH 18 M AREAREH
BIESLMIER 120 PSR (45,148 KE ). “#Video” F “#lmage”
SRR FRAIAERIEE .

Phone’s Brand | #Video | #Image | Resolution
iPhone 6s 4 1,029 1920x 1080
iPhone 7 13 6,081 1920x 1080
iPhone7 Plus 2 900 1920x 1080
iPhone8 Plus 1 489 1280720
iPhone 11 7 2,200 1920x 1080
iPhone 11 Pro 17 7,739 1920x 1080
iPhone XS 11 2,470 1920x 1080
iPhone XR 16 4,997 1920x 1080
iPhone SE 1 455 1920x 1080
Xiaomi Mi 9 2 1,145 1920x 1080
Xiaomi Mi Mix 3 6 2,972 1920x 1080
Pixel 3 4 1,311 1920x 1080
Pixel 4 3 1,923 1920x 1080
Oppo R17 6 2,126 1920x 1080
Vivo Nex 12 4,097 1280720
LG M322 2 761 1920x 1080
OnePlus 5T 1 293 1920x 1080
Huawei Mate 20 Pro 12 4,160 1920x 1080

4 EENRKSSIERT
RARAESTEA BT, I3 T 3T V225 i) LLIE [
SRR, W T OETAMT, TR T AN P R
B, DK R R R EJr RO R RAIETF % T %
AMESTA, LLIE BUHAOSS R AT A P A 5
R TEAR R, TR LA SR AT 1 O B 4
AT T T A

SR, R T 13 FAREENET RGB
W7, O 8 AT IR v (LLNet [11],
LightenNet [15], Retinex-Net [14], MBLLEN [13], KinD [21],
KinD++ [ ], TBEFN [ ], DSLR [ ]) , —FhET I
Sk (EnlightenGAN [30]), — kT e Ty i
(DRBN [13]), PAR AT BRI W75k (BxCNet [37],
Zero-DCE [3¢], RRDNet [30]). 55—Jrifi, 0178 e T
FREET raw 09777, 4045 SID [59] fil EEMEFN [26], i
YR, BT RGB HaAJr7e LLIE 5 KEH. Boh, K
EHHEET raw 0T A AT, B, Tl
T W PR R LS AR R T BT AT
VBT, BT A TP AR R R 45, DA
(LR A THY

4.1 HEREERGUMBIER

AR T MR B R FI LR 4 , #° LLIV-Phone,
DA AR IE LLIE J5yERYHERE. LLIV-Phone /2 [F2
I R A B FL S I iR A . el i
AL 120 ML (45,148 TKIE f), R 18 AT TP
1% 3L3A4% , F35 iPhone 6s. iPhone 7. iPhone 7 Plus. iPhone
8 Plus. iPhone 11, iPhone 11 Pro. iPhone XS, iPhone XR.,
iPhone SE. /MK 9. /K MIX 3. Pixel 3. Pixel 4, Oppo R17.
Vivo Nex. LG M322, OnePlus 5T. %k Mate 20 Pro, ¥4
FIRREHZE (BIAnEt. BOEARE . Hob. 5. RIS, RIS,
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B 4. \RHAY LLIV-Phone BE&EH IS EIRHK . XLEE RN
HARME & ER R EBIBE AR THEN.

L. ABYAPEAR COCIR) MENMESN R, R4PR
i7" LLIV-Phone $ndE it 2.

FATAEEAH /R T LLIV-Phone Kdls g i JLAMHEA .
LLIV-Phone [{ % nl £E50 H G314«

XAEA PR B R R A S SR, A
AT AU . B, B M TP R RO E G
ARSI SR Iz A RE T - (HA— PRI, RBIHE AT A
TR To i 27 ) ISR SR R 5 T IR S B ik, DA
A LSRR IR R

4.2 FELFHEFES
AR AR ] DATEA R )-F- 6 528, 40 Caffe, Theano.
TensorFlow il PyTorch. PFitt, AR 0HE TR LA [FATHCE
GPU HUAFIRE (RS . X FER BRI 2 090 5L T A
A, R T WIRE A AU I, AL = AT RERCA
GPU Bt R T X 2@, Fefi1H &% 74> LLIE fE4-F-
&, FrA LLIE-Platform, ®]¥E http://mc.nankai.edu.cn/11/
Vil

BEAMERAZH, LLIE-Platform {35 T 14 FhfAT
B ETIR ) i) LLIE 5%, 43 LLNet [11]. LightenNet
[15]. Retinex-Net [14]. Enlighten-GAN [36]. MBLLEN [13].
KinD [21]. KinD++ [61]., TBEFN [30]. DSLR [31]. DRBN
[43]. ExCNet [37]. Zero-DCE [38]. Zero-DCE++ [40] Fl
RRDNet [39], H LA A 45 15 w] LA i — N PR
TFRY M TS P A . FRATTREE IR X AP & EERHE BN
Tk FAAEXA LLIE & 6B I 55 T AW i 5E
Bty A PR RS R RO RIS AT A R T IR AR
) LLIE J5 ¥ & A AT T B i LLIE J7i%.
4.3 EEMRER
H T EVERE SRR 1) 5k, BT $&E LLIV-Phone

B, FATAERM T4 K LOL [14] F1 MIT-Adobe FiveK
[79] Bhide, ATMLERET RCB k&=, PAK SID [37]

BARENTET raw XL B2 SR T ATER
FEREH R HRE] . A [ P LR G KA R B SO C AR L
B EER T PATE YouTube: https://www.youtube.com/watch?
v=El09TkrG500&t=6s_ 3 %],

FKATA LLIV-Phone {4 48 1 & A 0080 H-F- 538 B 5 3K
B R, Hl— N EIE 600 5K IE R R aEdEgE Geh
LLIV-Phone-imgT)., 14, FAIM LLIV-Phone {34115
AT h AL — DU, B — DB 18
ANHEAT AT S 48 (324 LLIV-Phone-vidT) . F&A]
¥ LLIV-Phone-imgT Fil LLIV-Phone-vidT H#imifd 4352
W, B — S B TR 2R 2 I T AN BE A B A 4y R I
G T LOL $dlde, Fefr IR Jsthsr il e,
35 15 IRAEF S SRR B G e T, PRl
LOL-test . %} T MIT-Adobe FiveK £{#i4E , {1781 Chen 55
N [A7] WL, R ARRS SN PNG A%, FH ] Lightroom
PR A 512 BERME . FATRM S Chen 85 A
[47] AR AR 4, B MIT-Adobe FiveK-test, {23% 500
ik H A A B i B A AR Y ground truths. X
SID ##adk, AT EEMEFN [20] frERA g dE b7
RS, FEon ol SID-test (SID-test-Bayer Fil SID-test-
X-Trans), ‘E4& SID [85] B— 5820 M14E . SID-test-Bayer
45 93 KFEHAFER I, T SID-test-X-Trans fU4f 94 5k
APS-C X-Trans #i=010 K14 .

e PE L ER. FAT T SEAE ISR EI6 T R T ORI 7 kA LOL-
test F1 MIT-Adobe FiveK-test B gaftas oAk i i) 2%

WSS, B B m T A R B S BT
BE. SR, MAERMEEHE S ground truth FLREHT, BATHRE
A I HERA R SR g AR B i . FiaE, LLNet [11] 7~
A TR 452 . LightenNet [15] #l RRDNet [30] 774 T Bz
RS, T MBLLEN [13] #1 ExCNet [37] WA %
B¢t F . KinD [21]. KinD++ [61], TBEFN [30], DSLR
[51). EnlightenGAN [36] il DRBN [15] 8| A 7 W16 0%
TEE6H, LLNet [15], KinD++ [61], TBEFN [30] fl RRDNet
[30] 7= o) FEBR YL 45 5 . Retinex-Net [14], KinD++ [61] FI
RRDNet [39] ZEGS R H 72 T Dhsg FIBORI L 42 o

FATEIL, MIT-Adobe FiveK #5451 ground truths {7}
SR — 8 RIS X e X2 RN B S ) 2 o 42 R R
B RY, MREARDEKIEA @ H R 25 . FlTiE
W2, LOL a4 F1 MIT-Adobe FiveK %4 1 4 A K]
B AR D, X5 BSOS RO R . RE A LI
28], [31], [60] #F MIT-Adobe FiveK ¥ 81 Al 25 E i ik
s, HEAT N ZEIREARNTE A LLIE BE5%, FHAEM
ground truth A& & LLIE 1) ground truth,

KT HEEANR R ZARE S, FATXS LLIV-Phine-
imgT B4 H I G AT T IR . ANFETEM I 451 e
REETRIES v, ETHTR, B AR fe A s X
R I P g e FE M R BRI S . A, Retinex-Net [14].
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(a) input (b) LNet [11]

10

(c) LightenNet [15]  (d) Retinex-Net [11]  (e) MBLLEN [13]
(f) KinD [21] (g) KinD++ [61] (h) TBEFN [30] (i) DSLR [31] (j) Enlighten GAN [36]
(k) DRBN [43] (1) ExCNet [37] (m) Zero-DCE [38] (n) RRDNet [39] (0) GT
B 5. RREA#E LOL MiXHiREMRIBERFHK EHNEER.
(a) input (b) LLNet [11] (c) LightenNet [15]  (d) Retinex-Net [11] () MBLLEN [13]
(f) KinD [21] (g) KinD++ [61] (h) TBEFN [30] (i) DSLR [31]  (j) EnlightenGAN [30]
(k) DRBN [13] (1) ExCNet [37] (m) Zero-DCE [35] (n) RRDNet [39] (0) GT

6. REFEFE MIT-Adobe FiveK X # R /R ER B EIRAEIK LRI B L6 R

MBLLEN [13] i DRBN [43] 724 TR0 % . ZERISH, fr
B ERE R Tz ARG . SR, N MBLLEN
[13] F1 RRDNet [39] k45 79058 ARG 1g s, B0 36 i
25 Phsg R B / R (AT R, TR DGIR Y X, 1%
AP 7 3 T DATE AN ARG 3 4 X ] ] ) M 7 415 0 4 5
G . BRI LLIE §92% JE 15 B2 — N R
PRE . G5RW], H95% LLIV-Phine-imgT 4 ££ 1
SEAREMER . BT IA T LLIE JiERIZ AR ARR , FS
TOEEBIE R Z 8 LLIE JryE 2R, AR e K2 i &%
B NI VI ZREE SO B SE r fRise, R diot Bl
— B AR X 2807V A S I 1 Retinex B ) e 26

g%

FANHEE O — R T HF raw #5307 ik m oL 5E
HR. WEFTR, ARG EE A WA . SID [12] Al
EEMEFN [26] #{n] DAA ROBIH BRI A R . 5 SID i
ffRT ARG U-Net 54441, EEMEFN f 54 2% i 2544 545
TR ST . RN, AT SR SAINE GT 22
I, FEALRXT APS-C X-Trans #ECH0%A -

LS. XA ground truth B9Mi{4E, Bl LOL-test.
MIT-Adobe FiveK-test 1 SID-test, 4 15%H MSE. PSNR,
SSIM [56] Hil LPTPS [57] #ihr 4 & f LA (17 . LPIPS
S TR R ) W ER BT R PAL Fa AR, Bl i TR B
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B 7. AEA AL LLIV-Phon-imgT $EERERNREERER LMMIERE. (a) input. (b) LLNet [
] (&) KinD++ [61]. (h) TBEFN [30]. (i) DSLR [

(e) MBLLEN [13]. (f) KinD [
Zero-DCE [38]. (n) RRDNet [39].

(h) (i) 3

(e) MBLLEN [13]. (f) KinD [
Zero-DCE [38]. (n) RRDNet [39].

FAERAG B D EERAILRS () ground truth 2 8] 1 I
P, X LPIPS, FATRAEET AlexNet HURLARITI
FIARMUE . LPIPS {E%, 150 I Z8 KA SRR B3 75 v
T HAS R ground truth. FERSMIEGH, FAT2 AR T
FT RGB A EFIET raw M7 0 @ RESRXTLL .

W5~ , 7E LOL-test Fil MIT-Adobe FiveK-test £(3#
R, BTG IET R T o> kR
BE I IE g 217k o, LLNet [11] 78 LOL-test £

(k) U]

8. REFETE LLIV-Phon-imgT S BRI REER LHMEHNER. (a) input. (b) LLNet |
] (g) KinD++ [61]. (h) TBEFN [30]. (i) DSLR [

]- (c) LightenNet [15]. (d) Retinex-Net [14].
]- (j) EnlightenGAN [36]. (k) DRBN [43]. (I) ExCNet [37]. (m)

(d) (e) (f) ()

(m) (n)

]- (c) LightenNet [15]. (d) Retinex-Net [14].
]- (j) EnlightenGAN [36]. (k) DRBN [43]. (I) ExCNet [37]. (m)

££ 3RS T icr g MSE Fil PSNR {5 K1, ‘B4E MIT-Adobe
FiveK-test £(#f4E FAgPEREA T F% . XAl fig& H T LLNet
[11] X} LOL ¥EErmIn s, B2 LOL JIZ:4L
PR . X LOL-test #(#i4s, TBEFN [30] $k45% T i
= SSIM AH, T KinD [21] MFRAS T fe ki LPIPS {H . 4
AL e LOL YIgRBdage Elgh ki), {H7E LOL-test
B L, WA M — AN EYELE X DA bR LR R .
%tF MIT-Adobe FiveK-test $#i42, K4 MBLLEN [13] 2
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APS-C X-Trans

Bayer

12

(a) inputs (b) SID [85] (c) EEMEFN [20] (d) GT
?I%? M SID-test-Bayer # SID-test-X-Trans IR &I EBFRIHIE raw R KBEEG ERR A ENMRER. MNERHIGE KB EETTHR
X
x5
%t LOL-test 1 MIT-Adobe FiveK-test #3B&R) MSE(x102), PSNR (in dB), SSIM [86], #1 LPIPS [87] #{TEELLE. REEFRALERTR,
mME_FME=IFNERS FIAEBMERRT.
Learning Method LOL-test MIT-Adobe FiveK-test
MSE| | PSNR 1 | SSIM?T | LPIPS] MSE| | PSNR T | SSIM?T | LPIPS]
input 12.613 T.773 0.181 0.560 1.670 17.824 0.779 0.148
LLNet [11] 1.290 17.959 0.713 0.360 4.465 12.177 0.645 0.292
LightenNet [15] 7.614 10.301 0.402 0.394 4.127 13.579 0.744 0.166
Retinex-Net [14] 1.651 16.774 0.462 0.474 4.406 12.310 0.671 0.239
SL MBLLEN [13] 1.444 17.902 0.715 0.247 1.296 19.781 0.825 0.108
KinD [21] 1.431 17.648 0.779 0.175 2.675 14.535 0.741 0.177
KinD++ [61] 1.298 17.752 0.760 0.198 7.582 9.732 0.568 0.336
TBEFN [30] 1.764 17.351 0.786 0.210 3.865 12.769 0.704 0.178
DSLR [31] 3.536 15.050 0.597 0.337 1.925 16.632 0.782 0.167
UL EnlightenGAN [36] 1.998 17.483 0.677 0.322 3.628 13.260 0.745 0.170
SSL DRBN [13] 2.359 15.125 0.472 0.316 3.314 13.355 0.378 0.281
ExCNet [37] 2.292 15.783 0.515 0.373 2.927 13.978 0.710 0.187
ZSL Zero-DCE [38] 3.282 14.861 0.589 0.335 3.476 13.199 0.709 0.203
RRDNet [39] 6.313 11.392 0.468 0.361 7.057 10.135 0.620 0.303
X6
%F SID-test ##EEEH) MSE(x10%), PSNR (in dB), SSIM [86], 1 LPIPS [87] HTERLLE. RELRALERR. ATIHERN raw HiRH2
W58, HAMER Chen A [85] IREAVIARAYAENL ISP EiE, 4§ raw EiEHE A RGB 18,

SID-test—Bayer

SID-test—X-Trans

Learning | Method  —mrepr—T—pgNR T [ SSIMT [ LPIPS] || MSE] | PSNR T | SSIMT | LPIPS]
fopat 5378 | 11840 | 0.063 0711 1803 | 11880 | 0.075 0.796
ST, SO [7] 0.140 | 28614 | 0.757 | 0.465 0.235 | 26,663 | 0.680 0.586
EEMEFN [26] | 0126 | 20212 | 0.768 0.448 0.191 | 27423 | 0.695 0.546
A BN ZE s EINZRE, EEMA TR LA T A UL BT AL W B i bkl . FARZE R ILET .

5. g, MBLLEN [13] {7588 AN B8 [R] IR I 94~ 0,
Bt LA R RE .

WHE6FTR, SID [35] fl EEMEFN [20] #5455 T raw &
AR R . 5 SID 80, EEMEFN ZEA R 1 7 i
BB AT FR AR L EEUS T SR AR

XfF LLIV-Phone-imgT #lli{4E, FAIHINIEZ% 1QA
fabr, HINIQE [s8]. J#niggk (PI) [55], [39], [90]. LOE [3]
1 SPAQ [91] K E R AR T k. Bt LOE IMiF, LOE {H
PN, WSE LN PR B ARG . 3t NIQE 1155, NIQE {E

A, BSEFCRAEGY . PLEBUR, FORBONR L. SPAQ
T B BE TALEGE 10 B PR T 0 . SPAQ (HBCR,

WELHT, AT DAL I Retinex-Net [14], KinD++ [61]
Fl EnlightenGAN [36] i HE READGHL T HA 7 7% . Retinex-Net
[14] $FA45 T il i PL AT SPAQ 4340, X 28434 H] Retinex-
Net [14] Frsm 45 R AA RIFHy BT &. S0, MK 7(d)
FE 8(d) k%, Retinex-Net [14] fL5R BARZF| hg {4
MZERE L. Bsh, KinD++ [61] 345 T HAKH NIQE 4344,
M Bk ABRAT T 5 K% LOE 438, %3G s LOE
AR, FRATIESEE S BT 2 1 e A U W SR R B . Bk
b, FEHLUREHLT, AESH TQA FRARTe PEAL G5 1% e 32 15
B s I LT R 2E

N7 S LLIV-vidT RS, AT Jeils 1%
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r7
LLIV-Phine-imgT ##&&# NIQE [38], LOE [3], PI [88], [89], [90], #A
SPAQ [91] FEIMERILR. REHLHRALERR. ME_ME=IFH
HERSFNAEEMEERT.
. LoLi-Phone-imgT

Learning Method NTQE] [ LOE ] | PI] | SPAQT

input 6.99 0.00 [5.86| 44.45

LLNet [11] 5.86 5.86 | 5.66 | 40.56

LightenNet [15] 5.34 952.33 | 4.58 | 45.74

Retinex-Net [14] 5.01 790.21 | 3.48 | 50.95

SL MBLLEN [13] 5.08 220.63 | 4.27 | 42.50

KinD [21] 4.97 405.88 | 4.37 | 44.79

KinD++ [61] 4.73 681.97 | 3.99 | 46.89

TBEFN [30] 4.81 552.91 | 4.30 44.14

DSLR [31] 4.77 44798 | 4.31 | 41.08

UL Enlighten GAN [36] 4.79 821.87 | 4.19 45.48

SSL DRBN [13] 5.80 885.75 | 5.54 | 42.74

ExCNet [37] 5.55 723.56 | 4.38 | 46.74

ZSL Zero-DCE [38] 5.82 307.09 | 4.76 | 46.85

RRDNet [39] 597 | 142.89 | 4.84 | 45.31

*8
% LLIV-Phone-vidT BiEEMTHREES (ALV) BSoHITERILE.
REGFRBLERT, ME_NME-FHERS I AEBMEERT.

Learning Method LOLl-th?‘l;f-VIdT
input 185.60
LLNet [11] 85.72
LightenNet [15] 643.93
Retinex-Net [14] 94.05
SL MBLLEN |[13] 113.18
KinD [21] 98.05
KinD++ [61] 115.21
TBEFN [30)] 58.69
DSLR [1] 175.35
UL EnlightenGAN [36] 90.69
SSL. DRBN [17] 115.04
ExCNet [77] 1375.29
ZSL Zero-DCE [33] 117.22
RRDNet [30] 147.11

ST AT S PR E A, T — R T 10 A X T
AP, TR IR O A . SR 51
PR (0] 36 B AUTUE ST 0T IA , FEHIR
il bt S A TR A 25 20 A B R
ORI — T A A A o TR 3K 5 A RS e
TR RIS RO R ICBE, 0P e
WURE L R (ALV) 184 ALV = % 3 (Li—Lavg)®,
Sort N RO, Lo CF5 ¢ Wiefsh oA K sy 7495
FEAH . Lve F275 U301 F A7 300 FRE IR - 155 FE (L 82100
ALV {H 2 W1 038 5 1 FL S0 EL AT 8 P )00 . SR8
TR #E2E LLIV-vidT S BL8ERY 10 SBUEIH T4 ALV
i, 7 e U ALV (R DAE R FAE 4k
5. MO, AT Jiang Al Zheng [19] (UM , 7ERNFERTEL
g B T ST 28

nzesfrzn, TBEFN [30] £ ALV {65 AR 1 it

[a]—Z:, 1 LLNet [11] F1 EnlightenGAN [36] 4> 5IHE4 58
TR =, MZ T, ExCNet [37] By ALV {HAE R ZEMFE

B, 3% 1375.29. SRENETES%2 5[ ExCNet [37]

10. EEEHARMMK P-R B2

TEHYSRIESEWTT B RAFE . ExCNet |
T LRI SR, TN AT ORI B

| AT DA R

4.4 HEEZE

EFEH, AR THET RCB A B EE 4, 1
FEZATEIE . TS HOREE A NVIDIA 1080Ti GPU i 32
E /IR 1200900 % 3 BB F-4 FLOPs. A T #EFTATF
e, FA1ms T LightenNet [15], B A HAURS ) CPU
A AT . BLAh, FAT13Aa 04 ExCNet [37] Al RRDNet
[39] 5 FLOPs, P AXMUCFEATMAES CRFEHA
T B EREL) -

WMFRIFR, Zero-DCE [38] Wiz fTHI A A, FAER
W NREERMEEE LML S5, FHik, Brml
S0 FLOPs WiE /052 . 14, LightenNet [15] 1)
IS HECR A FLOPs 2 FrA L ik i /b o i 2
4 LightenNet [15] i id—4 1 DU~ U2 4L N 255K
Tl A\ R IR BER . M2 T, LLNet [11] il KinD++
[61] # FLOPs dE#k, 4Bk %] 4124.177G Hl 12238.026G.
FTZR2E 1) ExCNet [37] Al RRDNet [39] (3277 )i
K, AL R RGN

45 EFEAEFN
FEATWFIE T AR R 2 PR 3G 58 Ty AT BRI rh A )y T 1 25
M. I Guo % A [38] WiE, FAEH T DARK FACE
[80] Bdde , A A el e RS T A R . T
MRS FAEBA A FF, FATD AN ZRBE A 55 Uk b AL
FE) 500 FKE BT T VL. £ WIDER FACE [93] i
4E Fi)IlZk#) Dual Shot Face Detector (DSFD) [94] #% FA/E 1
TR . AR R LLIE Jrkp 4R 4 DSFD, H1E
Flhifi2: THE 0.5 ToU S FRAEE-H Bl (P-R) HiZk10. &
i1 il DARK FACE $dfidis [20] H 2 ETa TR T
AN ToU B FHFEREEE (AP), W10,

WMET0f 7R, FrA 5 TR ] Ry R e T %
I b A AS U P RE X RN EE T IR 2= 2] 1) LLIE gk )y

3. https://github.com/Irld/DARKFACE_eval tools
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x®9
L runtime (%)), AIYIZE4 (#Parameters) #& (M) #1 FLOPs (G) MtESERMHITERILE . REZRALERT, ME_MEZFHE
KRR RAEEMEERT. - RTZERRRKE.

Learning Method RunTime| | #Parameters| | FLOPs] Platform
LLNet [11] 36.270 17.908 4124.177 Theano
LightenNet [15] - 0.030 30.540 MATLAB
Retinex-Net [14] 0.120 0.555 587.470 TensorFlow
SL MBLLEN [13] 13.995 0.450 301.120 TensorFlow
KinD [21] 0.148 8.160 574.954 TensorFlow
KinD++ [61] 1.068 8.275 12238.026 | TensorFlow
TBEFN [30] 0.050 0.486 108.532 TensorFlow
DSLR [31] 0.074 14.931 96.683 PyTorch
UL EnlightenGAN [36] 0.008 8.637 273.240 PyTorch
SSL DRBN [13] 0.878 0.577 196.359 PyTorch
ExCNet [37] 23.280 8.274 - PyTorch
ZSL Zero-DCE [33] 0.003 0.079 84.990 PyTorch
RRDNet [30] 167.260 0.128 } PyTorch

% 10
EREPARRNEARR oU B{ETH AP HILLER. REERBLER
™ ME_MEZFNERSHIAERMEERT.

. IoU thresholds
Learning Method 05 0.6 0.7
input 0.195 | 0.061 | 0.007
LLNet [11] 0.208 | 0.063 | 0.006
LightenNet [15] 0.249 | 0.085 | 0.010
Retinex-Net [14] 0.261 | 0.101 | 0.013
SL MBLLEN [13] 0.249 | 0.092 | 0.010
KinD [21] 0.235 | 0.081 | 0.010
KinD++ [61] 0.251 | 0.090 | 0.011
TBEFN [30] 0.268 | 0.099 | 0.011
DSLR [31] 0.223 | 0.067 | 0.007
UL EnlightenGAN [36] | 0.246 | 0.083 | 0.011
SSL DRBN [13] 0.199 | 0.061 | 0.007
ExCNet [37] 0.256 | 0.092 | 0.010
ZSL Zero-DCE [38] 0.259 | 0.092 | 0.011
RRDNet [39] 0.248 | 0.083 | 0.010

ZEAE SR P A I A A . anER10FTR, ARH] ToU [SifE
THEAEVER AP £807F 0.268 F] 0.013 22 Ja], TiAfH IoU [#
TR AP 1350 JER AL, X LG5 AR, 5 vk
M4 . A ENE, Retinex-Net [14]. Zero-DCE [38] Fll
TBEFN [30] 75805 i 5Ll T A SR A IR . 34T
RN R TR IEN AR . R Retinex-Net [14]
1E AP 154 BICHAD AR BE L, (HE s R a5
BN TIRBERR RIS . BARYRDEL, Zero-DCE [38] £
SR OSSN AP A5 FEAT B2 (RIS T R AT
Mo TEIER, SRR ARSI A 4 RN S R S5 R %
5 NIRRT 2, ALHER I AT FIAS 25 ) N 2R -
EH, FATHPATUEIIZREF DSFD [94] Shfl, Fe—EfEfE
ISR T AN 5 Y A AR R A s M R

4.6 itig

MEEIREER A, FATEE] T LA R N LA -

1) ARSI RS S A PR P bR AN TR, AN TR 5 R
REFA AN A . 78 T INAEORE £ &S % QA F5br 4 m,
MBLLEN [13], KinD++ [61] 1 DSLR [31] 33 T H Al
e e TP o R R IR g, BT

B2 5] Retinex-Net [14] fl KinD++ [61] 7EIES% IQA #4
bR EARAS T GRS 6T S A S e LA R R RO
MRS, TBEFN [30] SEAFHbpR T bR EAY—2ctk. e
#EJ5M, LightenNet [15] fil Zero-DCE [38] £ H (4. M
PRI R R AS N 5 TR, TBEFN [30]. Retinex-Net [14]
il Zero-DCE [38] HELERT =00 AR L S& M . B
ki, Retinex-Net [14], [30], Zero-DCE [38], #1 DSLR [31] #£
KSR TR IR . AT raw 50l EEMEFN [2]
e SID [35] ZRAGHEXS AR PERE. AR, MARIEEERK R,
EEMEFN [26] #11¢ SID [85] S5AHR Y ground truth AHE, A
REAR S P2 B 1«

2)LLIV-Phone $idE iR ZHOIEBA R A . XFERIR
HIAITERIZALRE ) F7 2k — 4 . HREERZ,
AU 1329 5 B Dy 22 R VA S ) J5 SR AR ARG AR AT 58 5 T 1Y
RIEAGER . EA RN 2T R PR TR AR5 | AR IR B
MU ) e A 1) 1E 3

3) KT g, W 2E I TER Z R OL R IS T 4
MbERE, EE SRR SRR SRR . M T, &
YA IR SEBR  H A G  y, BR E R TR R B AR
MFRIIGREEE . A, BTy~ 5 iR A Az AL
BEJT. SR, EATAYMEREERUE L a2 B WAt Iy k.

4) MAESERAN IQA DR MFFAEZERE . Hmpiiid, —4
TSR A B 7 AR — NP TQA 73088 A ZRIERFIA
IQA M8 [ % A EAFE Z IITFF . 8 SKE 4 L8 B
ORI T R B o BN, ST AR R AR,
AN KTER A FHELZ R, 24 LLIE VAR T Ha s
TR A I B, MERA M SO R UL, FE BRI A
HF, BIZHE T AT B H R

5) BT IRIEA I LLIE J5 A0 BRI A A N R 2 A
T XRERYERIE— 2P SRR T SR AR IR R P AU
SCo BRI, S5IEHCAIE G N A IR & e R A L, R
ST LLIE J7ik, WG i AR i e i 5 A A

6) SHT RGB #%:XAY LLIE Jrikti i, BT raw #4530
(%) LLIE J5 Ol 5 AR i 40y, RIS %2, I
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(b) LightenNet [15]

(a) input

(e) KinD++ [61] (f) TBEFN [30]
(i) DRBN [13] (j) ExCNet [37]
11. FREAHEFEM DARK FACE HiRERHEMREEER EHARER.

HARBHI A EE N . X2 raw Bli & HEZ1(E
B WE SR A R ST . R, BT raw %X
(1) LLIE J7 35S0 RT45E 1 2 e A 2, g e AL 7
HARE LAILE) APS-C X-Trans #8. M2, BT
RGB #3Xf) LLIE Jrykshor fERE . P2 RGB &0
Hoe AR S R R A EBIE . R, BT RGB A%
(1) LLIE J7 35 AN BEAR L LY Xoh 22 B0t AT Ao 3 M 5 P 0L

5 Frmritio)EE

FEX 4, FRATEEE T % IR FGAAILABU 8 A T i
T

iZALtie ). A B B 5 IR T AP A — S5 BT E AR,
HENMZALRE AR i, 7E MIT-Adobe FiveK [79] %%
gk EVNZRI I A BEA RO 5 LOL [14] B4R AR IR
BIMR . RS G B BT R N R8s i Z A, (AAE
AN R AL A EINZRIREUN GEAR L AR PR X A
P LLIE J5 3Rz ALRE 10— 1 R AR B )

TR AR SN . W5 BUAT I V0 R ) 2 B T AL A KA A Y
R R AL BEEESR, FATATDAK I, X 2T VA A BEAR &
Mo BRI, B SORME R, JUHOR AR A BRI
DUR o RYEAT LT AR N GBI FPOm A T A / S 1
P R B RS T G EL S MRS AN PR MK 4T YR A LS
SR RRBIF A NI E . RIS ) T AR g
BBRARNDIEE. AATR]BE 2 A B0 5 A ELIR L A% AR 21
BRI BT RRC KN T —A51RMk, W JPEG

(¢) Retinex-Net [14] (d) MBLLEN [13]

(g) DSLR [31] (h) EnlightenGAN [30]

(k) Zero-DCE [38] (1) RRDNet [39]

BEBKA, AUEFBERIARIDRIE.

FEgRsismiE. UL, BB RE S R DR . SHIR T
PSSR ST AT I 1 B PR R 58 7 Rk A Pk A
EIEAS I SR I A S0 07 St h HA fR  J B R B R 1
SIRIERE . BN, FERCIAARENY B R BEA s Xk, A IEH
Jegk, B EEBSGRY I A IR K. B B D5 YA 1) T [
R 7 PRI DXSRAMIE P DXk, K M 1 M8 45 53 PR L Jo
SE b _EFATEE Ay BRI T I, (R R O K. A&
i, B LLIE J7 38t oA R i i sk i AT 17 L
DX 53 i85 SCIX. BUAT 4 07 32 0 1] 8 50 AR 2 PR R A 255 R
AN DT SUIE B B, FEIRIE B, — AR K
BEBE R I 0, PR R S 24 A TR Do . —
AR I 53 7 YR I % UG 9 Hh A S EAEE 5 R B O XK. 4
A DX 1 S — AT TR )

BENTAIARING. [ C 24 T — Se SRR IR MU O vk, {2
EAT I WO AR FAA . ] TS M AR Y R4
SRR REF N PRAL BRI JEE A W R AR R AL B, 4B
AT R R DXSskonT AR SR 5 M it 5 —A 1 12
ALk BRAH AU 35S HOAT DA B 050 24 1 it AR D 2 5
TSR] o

6 FREHEAM

55 EHE SR — S BA PRI DT IT IR . G 455 P SE 8
N5 BEEAT ORI BT DAFR Y, B T IR A etk iy
. FATHBCRAIAER DI AT -
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A 2 SR . T friA, H ATy LLIE #5284 = 20R A e
o), WERER BT INGRERE, IF n RETEAr & i EE S b
WG RE— LR S B T B ) 51 A LLIE,
B LLIE HIi% 2827 o] g 2 [ 1) WTE X RIFAERE, BN
LLIE A s tEfe Bt — itk . |es I W E S 5t iR
IR KRS, BT E RSO I R8s . X — e A0
BRNE L —DMAERIBEFE ), Rl e TS %1
2 BRBEFSCR LA SR Y il 2 L

LIRS LR R 25 S5 H AT DL 2 S M SR R . I AN W T
SIHT, K240 LLIE IRERAUR ) U-Net 83l U-Net 1
5K R ENTER L NS TR R MERE, (HA ARG
ZO0F X A G A - A g ) 28 5 AL 2 5 B il T LLIE AT 5510
A, BTSSR S RIEOR, BRI Z G R
2 B A AN A B HEBH R 18] o XA g IO 45 435 # AE S B 7 T
RATEZN. Wik, BRSSP, IMERE. WS
0 R €0 i S A R MR B R, WIS — R A R M
KA AT LLIE S W2« AT AT DAE 2 % AR I 2
PG 1wy BRAR DM PR B0 T R R A, TR ] 7 B
/2= (depthwise separable convolution layer) [95] 1 H &4
I (self-calibrate) [96] R AR M LEEEHE . 7T DA%E &
RAUMAEEEHE R (NAS) FOR [07], [98] R HRA5 A RCRIH
R LLIE [28 2548 . ff Transformer Z5#4) [99], [100] & Pd T
LLIE "R NETER . AR 1 o

T I AL PR R T i A AT ground truth 2 [A] )
KFR, HUREN TEREE M & Ak 78 LLIE H, & H B4 2k R
BORMAH R EAT 55 A . B, T3S AT LLIE
AR RBUR TR E W . B RRFE RN, A AT Re IR
28 28 K AT AR N AR 5T B i A s Sk [101], [102], x4t
AR B A RIS AT DA e 5 31T R 3 498 54 1) 2 1) 3 % R 0y
Wit

BN B . BAACAAE) LA LLIE (I gREidnse, EHE
SEt . RN 2 REVERR T I T HSC DL 5. I, IEInEE
Frarp TR, 4TI LLIE J BRI 3 Fc it 7 soh i
TGRS, TTEBHE S N ENERE. R EH 2R
%5 7 R FEMCER KHUA AN 22 HEAL I BLSE T ARG LLIE 1]
FRRARAE, B SR A R .

FRdEMBAE . B0, &8 AIAW LLIE WAL EME. RN
GO ) T e B A AT M, X AT BE SR HBATT HE  O ik
PRAARA . AT LU A T — SE TN B A R
P, B SRR ORI RN a2 X Rl 4 R 22 R . PR
EARF W EZ BT AP IR RAR ST, 22
AATRERY . BEAh, —Lel B E AR GG, AR
AR AR EHE R S . FRATT A A — AR e R AR R 3
PG AN 10 A, e B DR g 0 s A R 1
ground truths, #5537 5 FLEAD PR G IR &R 14
R AL 55 PR ks, LLIE vh 5k R A P 4845 T DATE—
FEFEFE bR iR . SR, ol ffif s —> LLIE J5 35

SRS 2, URIRRN HT QA FRFRBk A, Rl Xt
TAESEN R, HA IQA $5R 2 A AL EIRA,
WNEMR, BEASRTANLE AR, Wt s LT 55 15
Wio PHL, i AR I B EZ R A, 550
LLIE B S HERf AR E AL 55 P s .

BRIz AeRE )y, 8 A SR i B AR Y SR AR K
W, RZLEO7EHTHARKZARE M RIAWAE. Z
e s 220 th Z AN, W& N gkt . /NILAE Y
IGREE . TCRA M S SR ISR e RF AR Rz AL
REJTM T IR R R E 2

Tl (VIS P LB B i S . 5 FLA R R AR 550 A A
T [103]5 [104] ANHRATER 7355 [105] BRATIE 58 Fr) PR e JR AN
[f], AR S LA 3 A2 3 Y S e o R B Y LLIE JF
WEEN AT, S FERFRERESRAMNIR 5 .
RAANF T EE L 055 TIRA RO LR TEINER, A A 4Bt
ZIRIAITE R, RIS .

RO i U R VB SUF BRI I 0 B X BRI 4%
TSGR AR b DA AN [ Y DI . A AR AT LSRR 1 ) 28 AR
B 5y A X AR, A, FERS 3 5 R A AR UK
o P, RSO R R A7 LLIE 32— MR A
RIS 1] R TAEC SN TE T G P [100],
[LO7] FONJRAE S [105] J5THi o

Bt

AWFFEFE T RIE2020 =B LG 7=\ A EIH  (TAF-
ICP) BEhit Rl S, A= IAK B E sy ©
W55 T NTU SUG HI NAP H5 0f. 505 Rl CAAL4E
>4 MindSpore FFJi it &% 0

SE5UW
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